enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    The kernel of a m × n matrix A over a field K is a linear subspace of K n. That is, the kernel of A, the set Null(A), has the following three properties: Null(A) always contains the zero vector, since A0 = 0. If x ∈ Null(A) and y ∈ Null(A), then x + y ∈ Null(A). This follows from the distributivity of matrix multiplication over addition.

  3. Kernel (algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(algebra)

    The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix. The kernel of a homomorphism is reduced to 0 (or 1) if and only if the homomorphism is injective, that is if the inverse image of every element consists of a single element. This means that the kernel can be viewed as a measure of the ...

  4. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    Specifically, the singular value decomposition of an complex matrix ⁠ ⁠ is a factorization of the form =, where ⁠ ⁠ is an ⁠ ⁠ complex unitary matrix, is an rectangular diagonal matrix with non-negative real numbers on the diagonal, ⁠ ⁠ is an complex unitary matrix, and is the conjugate transpose of ⁠ ⁠. Such decomposition ...

  5. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    In the matrix notation, the adjacency matrix of the undirected graph could, e.g., be defined as a Boolean sum of the adjacency matrix of the original directed graph and its matrix transpose, where the zero and one entries of are treated as logical, rather than numerical, values, as in the following example:

  6. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The column space of a matrix A is the set of all linear combinations of the columns in A. If A = [a 1 ⋯ a n], then colsp(A) = span({a 1, ..., a n}). Given a matrix A, the action of the matrix A on a vector x returns a linear combination of the columns of A with the coordinates of x as coefficients; that is, the columns of the matrix generate ...

  7. DFT matrix - Wikipedia

    en.wikipedia.org/wiki/DFT_matrix

    In this case, if we make a very large matrix with complex exponentials in the rows (i.e., cosine real parts and sine imaginary parts), and increase the resolution without bound, we approach the kernel of the Fredholm integral equation of the 2nd kind, namely the Fourier operator that defines the continuous Fourier transform. A rectangular ...

  8. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    A ‘quasimatrix’ is, like a matrix, a rectangular scheme whose elements are indexed, but one discrete index is replaced by a continuous index. Likewise, a ‘cmatrix’, is continuous in both indices. As an example of a cmatrix, one can think of the kernel of an integral operator.

  9. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    In machine learning, kernel functions are often represented as Gram matrices. [2] (Also see kernel PCA) Since the Gram matrix over the reals is a symmetric matrix, it is diagonalizable and its eigenvalues are non-negative. The diagonalization of the Gram matrix is the singular value decomposition.