enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Epicycloid - Wikipedia

    en.wikipedia.org/wiki/Epicycloid

    In geometry, an epicycloid (also called hypercycloid) [1] is a plane curve produced by tracing the path of a chosen point on the circumference of a circlecalled an epicycle—which rolls without slipping around a fixed circle. It is a particular kind of roulette. An epicycloid with a minor radius (R2) of 0 is a circle. This is a degenerate form.

  3. Cycloid - Wikipedia

    en.wikipedia.org/wiki/Cycloid

    The cycloid through the origin, generated by a circle of radius r rolling over the x-axis on the positive side (y ≥ 0), consists of the points (x, y), with = (⁡) = (⁡), where t is a real parameter corresponding to the angle through which the rolling circle has rotated. For given t, the circle's centre lies at (x, y) = (rt, r).

  4. Brachistochrone curve - Wikipedia

    en.wikipedia.org/wiki/Brachistochrone_curve

    The curve of fastest descent is not a straight or polygonal line (blue) but a cycloid (red).. In physics and mathematics, a brachistochrone curve (from Ancient Greek βράχιστος χρόνος (brákhistos khrónos) 'shortest time'), [1] or curve of fastest descent, is the one lying on the plane between a point A and a lower point B, where B is not directly below A, on which a bead slides ...

  5. Hypocycloid - Wikipedia

    en.wikipedia.org/wiki/Hypocycloid

    The red path is a hypocycloid traced as the smaller black circle rolls around inside the larger black circle (parameters are R=4.0, r=1.0, and so k=4, giving an astroid). In geometry , a hypocycloid is a special plane curve generated by the trace of a fixed point on a small circle that rolls within a larger circle.

  6. Roulette (curve) - Wikipedia

    en.wikipedia.org/wiki/Roulette_(curve)

    If the rolling curve is a circle and the fixed curve is a line then the roulette is a trochoid. If, in this case, the point lies on the circle then the roulette is a cycloid . A related concept is a glissette , the curve described by a point attached to a given curve as it slides along two (or more) given curves.

  7. Epitrochoid - Wikipedia

    en.wikipedia.org/wiki/Epitrochoid

    The epitrochoid with R = 3, r = 1 and d = 1/2. In geometry, an epitrochoid (/ ɛ p ɪ ˈ t r ɒ k ɔɪ d / or / ɛ p ɪ ˈ t r oʊ k ɔɪ d /) is a roulette traced by a point attached to a circle of radius r rolling around the outside of a fixed circle of radius R, where the point is at a distance d from the center of the exterior circle.

  8. Cycloid gear - Wikipedia

    en.wikipedia.org/wiki/Cycloid_gear

    A cycloid (as used for the flank shape of a cycloidal gear) is constructed by rolling a rolling circle on a base circle. If the diameter of this rolling circle is chosen to be infinitely large, a straight line is obtained. The resulting cycloid is then called an involute and the gear is called an involute gear. In this respect involute gears ...

  9. Special cases of Apollonius' problem - Wikipedia

    en.wikipedia.org/wiki/Special_cases_of_Apollonius...

    The solution of this special case is similar to that of CPP. Draw a circle centered on the given point P; since the solution circle must pass through P, inversion in this circle transforms the solution circle into a line lambda. In general, the same inversion transforms the given circle C 1 and C 2 into two new circles, c 1 and c 2. Thus, the ...

  1. Related searches how to construct an epicycloid angle given a circle called 1 2 and 6 and 7

    epicycloid arc lengthcycloid biology
    epicycloid integercycloid examples
    what is a cycloid