enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    To empirically estimate the expected value of a random variable, one repeatedly measures observations of the variable and computes the arithmetic mean of the results. If the expected value exists, this procedure estimates the true expected value in an unbiased manner and has the property of minimizing the sum of the squares of the residuals ...

  3. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    Firstly, if the true population mean is unknown, then the sample variance (which uses the sample mean in place of the true mean) is a biased estimator: it underestimates the variance by a factor of (n − 1) / n; correcting this factor, resulting in the sum of squared deviations about the sample mean divided by n-1 instead of n, is called ...

  4. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  5. Mean - Wikipedia

    en.wikipedia.org/wiki/Mean

    If the random variable is denoted by , then the mean is also known as the expected value of (denoted ()). For a discrete probability distribution , the mean is given by ∑ x P ( x ) {\displaystyle \textstyle \sum xP(x)} , where the sum is taken over all possible values of the random variable and P ( x ) {\displaystyle P(x)} is the probability ...

  6. Joint probability distribution - Wikipedia

    en.wikipedia.org/wiki/Joint_probability_distribution

    If more than one random variable is defined in a random experiment, it is important to distinguish between the joint probability distribution of X and Y and the probability distribution of each variable individually. The individual probability distribution of a random variable is referred to as its marginal probability distribution.

  7. Probability mass function - Wikipedia

    en.wikipedia.org/wiki/Probability_mass_function

    The graph of a probability mass function. All the values of this function must be non-negative and sum up to 1. In probability and statistics, a probability mass function (sometimes called probability function or frequency function [1]) is a function that gives the probability that a discrete random variable is exactly equal to some value. [2]

  8. Mode (statistics) - Wikipedia

    en.wikipedia.org/wiki/Mode_(statistics)

    Like the statistical mean and median, the mode is a way of expressing, in a (usually) single number, important information about a random variable or a population. The numerical value of the mode is the same as that of the mean and median in a normal distribution , and it may be very different in highly skewed distributions .

  9. Probability-generating function - Wikipedia

    en.wikipedia.org/wiki/Probability-generating...

    Probability generating functions are particularly useful for dealing with functions of independent random variables. For example: If , =,,, is a sequence of independent (and not necessarily identically distributed) random variables that take on natural-number values, and