Search results
Results from the WOW.Com Content Network
A RAID 0 array of n drives provides data read and write transfer rates up to n times as high as the individual drive rates, but with no data redundancy. As a result, RAID 0 is primarily used in applications that require high performance and are able to tolerate lower reliability, such as in scientific computing [5] or gaming.
The first number in the numeric designation denotes the lowest RAID level in the "stack", while the rightmost one denotes the highest layered RAID level; for example, RAID 50 layers the data striping of RAID 0 on top of the distributed parity of RAID 5. Nested RAID levels include RAID 01, RAID 10, RAID 100, RAID 50 and RAID 60, which all ...
There are five different RAID-Z modes: RAID-Z0 (similar to RAID 0, offers no redundancy), RAID-Z1 (similar to RAID 5, allows one disk to fail), RAID-Z2 (similar to RAID 6, allows two disks to fail), RAID-Z3 (a RAID 7 [a] configuration, allows three disks to fail), and mirror (similar to RAID 1, allows all but one of the disks to fail). [22]
RAID (/ r eɪ d /; redundant array of inexpensive disks or redundant array of independent disks) [1] [2] is a data storage virtualization technology that combines multiple physical data storage components into one or more logical units for the purposes of data redundancy, performance improvement, or both.
A RAID level is any of the possible configurations of a RAID disk array. RAID stands for redundant array of independent disks (or, formerly, redundant array of inexpensive disks). RAID levels may refer to: Standard RAID levels, all the RAID configurations defined in the Common RAID Disk Drive Format standard, which is maintained by the Storage ...
Data redundancy leads to data anomalies and corruption and generally should be avoided by design; [5] applying database normalization prevents redundancy and makes the best possible usage of storage. [ 6 ]
Those RAID systems made their way to the consumer market, for users wanting the fault-tolerance of RAID without investing in expensive SCSI drives. Fast consumer drives make it possible to build RAID systems at lower cost than with SCSI, but most ATA RAID controllers lack a dedicated buffer or high-performance XOR hardware for parity calculation.
In some RAID configurations, such as RAID 0, failure of a single member drive of the RAID array causes all stored data to be lost. In other RAID configurations, such as a RAID 5 that contains distributed parity and provides redundancy , if one member drive fails the data can be restored using the other drives in the array.