enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Membrane potential - Wikipedia

    en.wikipedia.org/wiki/Membrane_potential

    Rate of ionic flow through the channel, i.e. single-channel current amplitude, is determined by the maximum channel conductance and electrochemical driving force for that ion, which is the difference between the instantaneous value of the membrane potential and the value of the reversal potential.

  3. Rheobase - Wikipedia

    en.wikipedia.org/wiki/Rheobase

    Rheobase is a measure of membrane potential excitability. In neuroscience, rheobase is the minimal current amplitude of infinite duration that results in the depolarization threshold of the cell membranes being reached, such as an action potential or the contraction of a muscle. [1]

  4. Biological neuron model - Wikipedia

    en.wikipedia.org/wiki/Biological_neuron_model

    Stochastic spike generation (noisy output) depends on the momentary difference between the membrane potential V(t) and the threshold. The membrane potential V of the spike response model (SRM) has two contributions. [51] [52] First, input current I is filtered by a first filter k. Second the sequence of output spikes S(t) is filtered by a ...

  5. Action potential - Wikipedia

    en.wikipedia.org/wiki/Action_potential

    The higher the membrane potential the greater the probability of activation. Once a channel has activated, it will eventually transition to the inactivated (closed) state. It tends then to stay inactivated for some time, but, if the membrane potential becomes low again, the channel will eventually transition back to the deactivated state.

  6. Voltage clamp - Wikipedia

    en.wikipedia.org/wiki/Voltage_clamp

    The microelectrodes compare the membrane potential against a command voltage, giving an accurate reproduction of the currents flowing across the membrane. Current readings can be used to analyze the electrical response of the cell to different applications. This technique is favored over single-microelectrode clamp or other voltage clamp ...

  7. Electrophysiology - Wikipedia

    en.wikipedia.org/wiki/Electrophysiology

    The current clamp technique records the membrane potential by injecting current into a cell through the recording electrode. Unlike in the voltage clamp mode, where the membrane potential is held at a level determined by the experimenter, in "current clamp" mode the membrane potential is free to vary, and the amplifier records whatever voltage ...

  8. Hodgkin–Huxley model - Wikipedia

    en.wikipedia.org/wiki/Hodgkin–Huxley_model

    where I is the total membrane current per unit area, C m is the membrane capacitance per unit area, g K and g Na are the potassium and sodium conductances per unit area, respectively, V K and V Na are the potassium and sodium reversal potentials, respectively, and g l and V l are the leak conductance per unit area and leak reversal potential ...

  9. End-plate potential - Wikipedia

    en.wikipedia.org/wiki/End-plate_potential

    This causes the membrane potential to drop down to its resting membrane potential of -100mV. Hyperpolarization occurs because the slow-acting potassium channels take longer to deactivate, so the membrane overshoots the resting potential. It gradually returns to resting potential and is ready for another action potential to occur.