Search results
Results from the WOW.Com Content Network
Latent heat (also known as latent energy or heat of transformation) is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process—usually a first-order phase transition, like melting or condensation. Latent heat can be understood as hidden energy which is supplied or extracted to change the state ...
Temperature-dependency of the heats of vaporization for water, methanol, benzene, and acetone. In thermodynamics, the enthalpy of vaporization (symbol ∆H vap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy that must be added to a liquid substance to transform a quantity of that substance into a gas.
In 2015, Yin et al. developed an analytical expression for LCL height using Lambert-W function under the assumption of constant latent heat of vaporization. [1] Separately, in 2017, David Romps derived the explicit and analytic expression for the LCL and the analogous lifting deposition level (LDL) assuming only constant heat capacities: [2]
In the equation above, L c (T) is the latent heat of condensation of water at temperature T, m a is the mass of the air in the cloud chamber, c p is the specific heat of dry air at constant pressure and is the change in the temperature of the air due to latent heat.
In thermodynamics, a critical point (or critical state) is the end point of a phase equilibrium curve. One example is the liquid–vapor critical point, the end point of the pressure–temperature curve that designates conditions under which a liquid and its vapor can coexist.
Taking a volume of air at temperature T and mixing ratio of r, drying it by condensation will restore energy to the airmass. This will depend on the latent heat release as: + where: : latent heat of evaporation (2400 kJ/kg at 25°C to 2600 kJ/kg at −40°C)
The amount of energy required for a phase change is known as latent heat. The "cooling rate" is the slope of the cooling curve at any point. Alloys have a melting point range. It solidifies as shown in the figure above. First, the molten alloy reaches to liquidus temperature and then freezing range starts.
The temperature obtained when an air parcel expands adiabatically, at constant pressure, until its water vapor content has been condensed out and the latent heat of condensation is available to raise the air temperature. [1] Eulerian equations European windstorm evaporimeter. Also atmometer.