enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uranium-238 - Wikipedia

    en.wikipedia.org/wiki/Uranium-238

    Doppler broadening of 238 U's neutron absorption resonances, increasing absorption as fuel temperature increases, is also an essential negative feedback mechanism for reactor control. Around 99.284% of natural uranium's mass is uranium-238, which has a half-life of 1.41 × 10 17 seconds (4.468 × 10 9 years, or 4.468 billion years). [1]

  3. Uranium–lead dating - Wikipedia

    en.wikipedia.org/wiki/Uranium–lead_dating

    The existence of two 'parallel' uranium–lead decay routes (238 U to 206 Pb and 235 U to 207 Pb) leads to multiple feasible dating techniques within the overall U–Pb system. The term U–Pb dating normally implies the coupled use of both decay schemes in the 'concordia diagram' (see below). However, use of a single decay scheme (usually 238 ...

  4. List of radioactive nuclides by half-life - Wikipedia

    en.wikipedia.org/wiki/List_of_radioactive...

    This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds. [1]

  5. Radiometric dating - Wikipedia

    en.wikipedia.org/wiki/Radiometric_dating

    One of its great advantages is that any sample provides two clocks, one based on uranium-235's decay to lead-207 with a half-life of about 700 million years, and one based on uranium-238's decay to lead-206 with a half-life of about 4.5 billion years, providing a built-in crosscheck that allows accurate determination of the age of the sample ...

  6. Uranium–uranium dating - Wikipedia

    en.wikipedia.org/wiki/Uraniumuranium_dating

    Uraniumuranium dating is a radiometric dating technique which compares two isotopes of uranium (U) in a sample: uranium-234 (234 U) and uranium-238 (238 U). It is one of several radiometric dating techniques exploiting the uranium radioactive decay series, in which 238 U undergoes 14 alpha and beta decay events on the way to the stable isotope 206 Pb.

  7. Isotopes of uranium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_uranium

    234 U occurs in natural uranium as an indirect decay product of uranium-238, but makes up only 55 parts per million of the uranium because its half-life of 245,500 years is only about 1/18,000 that of 238 U. The path of production of 234 U is this: 238 U alpha decays to thorium-234. Next, with a short half-life, 234 Th beta decays to ...

  8. Lead–lead dating - Wikipedia

    en.wikipedia.org/wiki/Lead–lead_dating

    The U–Pb dating method can yield the most precise ages for early Solar System objects due to the optimal half-life of 238 U. However, the absence of zircon or other uranium-rich minerals in chondrites, and the presence of initial non-radiogenic Pb (common Pb), rules out direct use of the U–Pb concordia method.

  9. Radium-226 - Wikipedia

    en.wikipedia.org/wiki/Radium-226

    The decay-chain of uranium-238, which contains radium-226 as an intermediate decay product. 226 Ra occurs in the decay chain of uranium-238 (238 U), which is the most common naturally occurring isotope of uranium. It undergoes alpha decay to radon-222, which is also radioactive; the decay chain ultimately terminates at lead-206.