enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conservation law - Wikipedia

    en.wikipedia.org/wiki/Conservation_law

    In continuum mechanics, the most general form of an exact conservation law is given by a continuity equation. For example, conservation of electric charge q is ∂ ρ ∂ t = − ∇ ⋅ j {\displaystyle {\frac {\partial \rho }{\partial t}}=-\nabla \cdot \mathbf {j} \,} where ∇⋅ is the divergence operator, ρ is the density of q (amount per ...

  3. Noether's theorem - Wikipedia

    en.wikipedia.org/wiki/Noether's_theorem

    Noether's formulation is quite general and has been applied across classical mechanics, high energy physics, and recently statistical mechanics. [2] Noether's theorem is used in theoretical physics and the calculus of variations. It reveals the fundamental relation between the symmetries of a physical system and the conservation laws.

  4. Conservation of energy - Wikipedia

    en.wikipedia.org/wiki/Conservation_of_energy

    This is an accepted version of this page This is the latest accepted revision, reviewed on 24 February 2025. Law of physics and chemistry This article is about the law of conservation of energy in physics. For sustainable energy resources, see Energy conservation. Part of a series on Continuum mechanics J = − D d φ d x {\displaystyle J=-D{\frac {d\varphi }{dx}}} Fick's laws of diffusion ...

  5. Continuity equation - Wikipedia

    en.wikipedia.org/wiki/Continuity_equation

    The laws of physics are invariant with respect to space-translation—for example, a rocket in outer space is not subject to different forces or potentials if it is displaced in any given direction (eg. x, y, z), leading to the conservation of the three components of momentum conservation of momentum. The laws of physics are invariant with ...

  6. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    The foundational axioms of fluid dynamics are the conservation laws, specifically, conservation of mass, conservation of linear momentum, and conservation of energy (also known as the first law of thermodynamics). These are based on classical mechanics and are modified in quantum mechanics and general relativity.

  7. Conservation of mass - Wikipedia

    en.wikipedia.org/wiki/Conservation_of_mass

    The law can be formulated mathematically in the fields of fluid mechanics and continuum mechanics, where the conservation of mass is usually expressed using the continuity equation, given in differential form as + =, where is the density (mass per unit volume), is the time, is the divergence, and is the flow velocity field.

  8. No-hiding theorem - Wikipedia

    en.wikipedia.org/wiki/No-hiding_theorem

    In the classical world, information can be copied and deleted perfectly. In the quantum world, however, the conservation of quantum information should mean that information cannot be created nor destroyed. This concept stems from two fundamental theorems of quantum mechanics: the no-cloning theorem and the no-deleting theorem. But the no-hiding ...

  9. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    In Lagrangian mechanics, the system is closed if and only if its Lagrangian does not explicitly depend on time. The energy conservation law states that the energy of a closed system is an integral of motion. More precisely, let q = q(t) be an extremal. (In other words, q satisfies the Euler–Lagrange equations).