Search results
Results from the WOW.Com Content Network
A model is an extension of a Java class that can contain not only fields and methods but also constraints and an objective function. It is introduced by the model keyword and follows the same rules as class declarations. A non-abstract model must be linked to a solver, introduced by the keyword solver.
Examples of these kinds of methods include tabu search and genetic algorithms. [4] Metamodels enable researchers to obtain reliable approximate model outputs without running expensive and time-consuming computer simulations. Therefore, the process of model optimization can take less computation time and cost. [8]
The use of optimization software requires that the function f is defined in a suitable programming language and connected at compilation or run time to the optimization software. The optimization software will deliver input values in A , the software module realizing f will deliver the computed value f ( x ) and, in some cases, additional ...
Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements and objective are represented by linear relationships.
Some special cases of nonlinear programming have specialized solution methods: If the objective function is concave (maximization problem), or convex (minimization problem) and the constraint set is convex, then the program is called convex and general methods from convex optimization can be used in most cases.
If sub-problems can be nested recursively inside larger problems, so that dynamic programming methods are applicable, then there is a relation between the value of the larger problem and the values of the sub-problems. [1] In the optimization literature this relationship is called the Bellman equation.
Given a system transforming a set of inputs to output values, described by a mathematical function f, optimization refers to the generation and selection of the best solution from some set of available alternatives, [1] by systematically choosing input values from within an allowed set, computing the value of the function, and recording the best value found during the process.
Sequential minimal optimization; Sequential quadratic programming; Simplex algorithm; Simulated annealing; Simultaneous perturbation stochastic approximation; Social cognitive optimization; Space allocation problem; Space mapping; Special ordered set; Spiral optimization algorithm; Stochastic dynamic programming; Stochastic gradient Langevin ...