Search results
Results from the WOW.Com Content Network
Projection (measure theory) Projection (linear algebra) – Idempotent linear transformation from a vector space to itself; Projection (relational algebra) – Operation that restricts a relation to a specified set of attributes; Relation (mathematics) – Relationship between two sets, defined by a set of ordered pairs
In mathematics, a presentation is one method of specifying a group.A presentation of a group G comprises a set S of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set R of relations among those generators.
A projection may also refer to a mapping which has a right inverse. Both notions are strongly related, as follows. Let p be an idempotent mapping from a set A into itself (thus p ∘ p = p) and B = p(A) be the image of p. If we denote by π the map p viewed as a map from A onto B and by i the injection of B into A (so that p = i ∘ π), then ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
Cardinal functions are widely used in topology as a tool for describing various topological properties. [4] [5] Below are some examples.(Note: some authors, arguing that "there are no finite cardinal numbers in general topology", [6] prefer to define the cardinal functions listed below so that they never take on finite cardinal numbers as values; this requires modifying some of the definitions ...
Every set is a projective object in Set (assuming the axiom of choice). The finitely presentable objects in Set are the finite sets. Since every set is a direct limit of its finite subsets, the category Set is a locally finitely presentable category. If C is an arbitrary category, the contravariant functors from C to Set are often an important ...
In mathematics, specifically in category theory, an exponential object or map object is the categorical generalization of a function space in set theory. Categories with all finite products and exponential objects are called cartesian closed categories. Categories (such as subcategories of Top) without adjoined products may still have an ...