Search results
Results from the WOW.Com Content Network
Electronic light sensors. Optoelectronics (or optronics) is the study and application of electronic devices and systems that find, detect and control light, usually considered a sub-field of photonics. In this context, light often includes invisible forms of radiation such as gamma rays, X-rays, ultraviolet and infrared, in addition to visible ...
Optical fibers can be used as sensors to measure strain, [1] temperature, pressure and other quantities by modifying a fiber so that the quantity to be measured modulates the intensity, phase, polarization, wavelength or transit time of light in the fiber. Sensors that vary the intensity of light are the simplest, since only a simple source and ...
An optical sensor converts light rays into electronic signals. It measures the physical quantity of light and then translates it into a form readable by an instrument. An optical sensor is generally part of a larger system that integrates a source of light, a measuring device, and the optical sensor. This is often connected to an electrical ...
Optical fibers can be used as sensors to measure strain, temperature, pressure, and other quantities by modifying a fiber so that the property being measured modulates the intensity, phase, polarization, wavelength, or transit time of light in the fiber. Sensors that vary the intensity of light are the simplest since only a simple source and ...
Electro–optics is a branch of electrical engineering, electronic engineering, materials science, and material physics involving components, electronic devices such as lasers, laser diodes, LEDs, waveguides, etc. which operate by the propagation and interaction of light with various tailored materials.
In solid-state physics, a quantum sensor is a quantum device that responds to a stimulus. Usually this refers to a sensor, which has quantized energy levels, uses quantum coherence or entanglement to improve measurements beyond what can be done with classical sensors. [4] There are four criteria for solid-state quantum sensors: [4]
Sensors: Photons can also be used to detect and differentiate the optical properties of materials. They can identify chemical or biochemical gases from air pollution, organic produce, and contaminants in the water. They can also be used to detect abnormalities in the blood, such as low glucose levels, and measure biometrics such as pulse rate.
Remote photoelectric sensors used for remote sensing contain only the optical components of a sensor. The circuitry for power input, amplification, and output switching is located elsewhere, typically in a control panel. This allows the sensor, itself, to be very small. Also, the controls for the sensor are more accessible, since they may be ...