enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Detective quantum efficiency - Wikipedia

    en.wikipedia.org/wiki/Detective_quantum_efficiency

    The detective quantum efficiency (often abbreviated as DQE) is a measure of the combined effects of the signal (related to image contrast) and noise performance of an imaging system, generally expressed as a function of spatial frequency. This value is used primarily to describe imaging detectors in optical imaging and medical radiography.

  3. Quantum imaging - Wikipedia

    en.wikipedia.org/wiki/Quantum_imaging

    Quantum imaging [1] [2] is a new sub-field of quantum optics that exploits quantum correlations such as quantum entanglement of the electromagnetic field in order to image objects with a resolution or other imaging criteria that is beyond what is possible in classical optics.

  4. Quantum engineering - Wikipedia

    en.wikipedia.org/wiki/Quantum_engineering

    Quantum engineering is evolving into its own engineering discipline. The quantum industry requires a quantum-literate workforce, a missing resource at the moment. Currently, scientists in the field of quantum technology have mostly either a physics or engineering background and have acquired their ”quantum engineering skills” by experience.

  5. Quantum efficiency - Wikipedia

    en.wikipedia.org/wiki/Quantum_efficiency

    A graph showing variation of quantum efficiency with wavelength of a CCD chip from Wide Field and Planetary Camera 2, formerly installed on the Hubble Space Telescope.. The term quantum efficiency (QE) may apply to incident photon to converted electron (IPCE) ratio [1] of a photosensitive device, or it may refer to the TMR effect of a magnetic tunnel junction.

  6. Quantum image processing - Wikipedia

    en.wikipedia.org/wiki/Quantum_image_processing

    Quantum image processing (QIMP) is using quantum computing or quantum information processing to create and work with quantum images. [1] [2]Due to some of the properties inherent to quantum computation, notably entanglement and parallelism, it is hoped that QIMP technologies will offer capabilities and performances that surpass their traditional equivalents, in terms of computing speed ...

  7. Quantum sensor - Wikipedia

    en.wikipedia.org/wiki/Quantum_sensor

    A proof-of-concept quantum radar or quantum illuminator using quantum entangled microwaves was able to detect low reflectivity objects at room-temperature – such may be useful for improved radar systems, security scanners and medical imaging systems. [35] [36] [37] Neuroimaging

  8. Applications of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Applications_of_quantum...

    Important applications of quantum theory include quantum chemistry, quantum optics, quantum computing, superconducting magnets, light-emitting diodes, the optical amplifier and the laser, the transistor and semiconductors such as the microprocessor, medical and research imaging such as magnetic resonance imaging and electron microscopy. [4]

  9. Quantum image - Wikipedia

    en.wikipedia.org/wiki/Quantum_image

    Quantum computation, which exploits quantum parallelism, is in principle faster than a classical computer for certain problems. [1] Quantum image is encoding the image information in quantum-mechanical systems instead of classical ones and replacing classical with quantum information processing may alleviate some of these challenges.