enow.com Web Search

  1. Ads

    related to: empirical risk minimization ppt slideshare presentation template

Search results

  1. Results from the WOW.Com Content Network
  2. Empirical risk minimization - Wikipedia

    en.wikipedia.org/wiki/Empirical_risk_minimization

    Empirical risk minimization for a classification problem with a 0-1 loss function is known to be an NP-hard problem even for a relatively simple class of functions such as linear classifiers. [5] Nevertheless, it can be solved efficiently when the minimal empirical risk is zero, i.e., data is linearly separable .

  3. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    In machine learning, specifically empirical risk minimization, MSE may refer to the empirical risk (the average loss on an observed data set), as an estimate of the true MSE (the true risk: the average loss on the actual population distribution). The MSE is a measure of the quality of an estimator.

  4. Sample complexity - Wikipedia

    en.wikipedia.org/wiki/Sample_complexity

    In others words, the sample complexity (,,) defines the rate of consistency of the algorithm: given a desired accuracy and confidence , one needs to sample (,,) data points to guarantee that the risk of the output function is within of the best possible, with probability at least .

  5. Rademacher complexity - Wikipedia

    en.wikipedia.org/wiki/Rademacher_complexity

    The worst case empirical Rademacher complexity is ¯ = = {, …,} ⁡ Let be a probability distribution over . The Rademacher complexity of the function class F {\displaystyle {\mathcal {F}}} with respect to P {\displaystyle P} for sample size m {\displaystyle m} is:

  6. Vapnik–Chervonenkis theory - Wikipedia

    en.wikipedia.org/wiki/Vapnik–Chervonenkis_theory

    In words the VC inequality is saying that as the sample increases, provided that has a finite VC dimension, the empirical 0/1 risk becomes a good proxy for the expected 0/1 risk. Note that both RHS of the two inequalities will converge to 0, provided that S ( F , n ) {\displaystyle S({\mathcal {F}},n)} grows polynomially in n .

  7. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    Neural networks are typically trained through empirical risk minimization.This method is based on the idea of optimizing the network's parameters to minimize the difference, or empirical risk, between the predicted output and the actual target values in a given dataset. [4]

  8. Bayes estimator - Wikipedia

    en.wikipedia.org/wiki/Bayes_estimator

    The Bayes risk of ^ is defined as ((, ^)), where the expectation is taken over the probability distribution of : this defines the risk function as a function of ^. An estimator θ ^ {\displaystyle {\widehat {\theta }}} is said to be a Bayes estimator if it minimizes the Bayes risk among all estimators.

  9. SlideShare - Wikipedia

    en.wikipedia.org/wiki/SlideShare

    SlideShare is an American hosting service, now owned by Scribd, for professional content including presentations, infographics, documents, and videos. Users can upload files privately or publicly in PowerPoint, Word, or PDF format. Content can then be viewed on the site itself, on mobile devices or embedded on other sites.

  1. Ads

    related to: empirical risk minimization ppt slideshare presentation template