enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in probably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  3. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    The simplex algorithm and its variants fall in the family of edge-following algorithms, so named because they solve linear programming problems by moving from vertex to vertex along edges of a polytope. This means that their theoretical performance is limited by the maximum number of edges between any two vertices on the LP polytope.

  4. Linear programming relaxation - Wikipedia

    en.wikipedia.org/wiki/Linear_programming_relaxation

    Otherwise, let x j be any variable that is set to a fractional value in the relaxed solution. Form two subproblems, one in which x j is set to 0 and the other in which x j is set to 1; in both subproblems, the existing assignments of values to some of the variables are still used, so the set of remaining variables becomes V i \ {x j ...

  5. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    However, we can solve it without the integrality constraints (i.e., drop the last constraint), using standard methods for solving continuous linear programs. While this formulation allows also fractional variable values, in this special case, the LP always has an optimal solution where the variables take integer values.

  6. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    The tableau is a representation of the linear program where the basic variables are expressed in terms of the non-basic ones: [1]: 65 = + = + where is the vector of m basic variables, is the vector of n non-basic variables, and is the maximization objective.

  7. Ellipsoid method - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid_method

    using at most the following number of arithmetic operations on real numbers: (()) ⁡ (()) where V(p) is a data-dependent quantity. Intuitively, it means that the number of operations required for each additional digit of accuracy is polynomial in Size(p). In the case of the ellipsoid method, we have:

  8. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    The variables corresponding to the columns of the identity matrix are called basic variables while the remaining variables are called nonbasic or free variables. If the values of the nonbasic variables are set to 0, then the values of the basic variables are easily obtained as entries in b {\displaystyle \mathbf {b} } and this solution is a ...

  9. Cutting-plane method - Wikipedia

    en.wikipedia.org/wiki/Cutting-plane_method

    The use of cutting planes to solve MILP was introduced by Ralph E. Gomory. Cutting plane methods for MILP work by solving a non-integer linear program, the linear relaxation of the given integer program. The theory of Linear Programming dictates that under mild assumptions (if the linear program has an optimal solution, and if the feasible ...