Search results
Results from the WOW.Com Content Network
where the final substitution, N 0 = e C, is obtained by evaluating the equation at t = 0, as N 0 is defined as being the quantity at t = 0. This is the form of the equation that is most commonly used to describe exponential decay. Any one of decay constant, mean lifetime, or half-life is sufficient to characterise the decay.
Equation (1) q̃ = −K∇z. On the left-hand side is sediment flux which is the volume of the mass that passes a line each time unit (L 3 /LT). K is a rate constant (L 2 /T), and ∇z the gradient or height difference between two points at a slope divided
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
Other books on similar topics include A Treatise on the Calculus of Finite Differences by George Boole, Introduction to Difference Equations by S. Goldberg, [5] Difference Equations: An Introduction with Applications by W. G. Kelley and A. C. Peterson, An Introduction to Difference Equations by S. Elaydi, Theory of Difference Equations: An Introduction by V. Lakshmikantham and D. Trigiante ...
Here, fold change is defined as the ratio of the difference between final value and the initial value divided by the initial value. For quantities A and B, the fold change is given as (B − A)/A, or equivalently B/A − 1. This formulation has appealing properties such as no change being equal to zero, a 100% increase is equal to 1, and a 100% ...
A percentage change is a way to express a change in a variable. It represents the relative change between the old value and the new one. [6]For example, if a house is worth $100,000 today and the year after its value goes up to $110,000, the percentage change of its value can be expressed as = = %.
When ,,, and the initial condition are real numbers, this difference equation is called a Riccati difference equation. [ 3 ] Such an equation can be solved by writing w t {\displaystyle w_{t}} as a nonlinear transformation of another variable x t {\displaystyle x_{t}} which itself evolves linearly.
The half-life of a population is the time taken for the population to decline to half its size. We can calculate the half-life of a geometric population using the equation: N t = λ t N 0 by exploiting our knowledge of the fact that the population (N) is half its size (0.5N) after a half-life. [20]