Search results
Results from the WOW.Com Content Network
If the Markov chain is time-homogeneous, then the transition matrix P is the same after each step, so the k-step transition probability can be computed as the k-th power of the transition matrix, P k. If the Markov chain is irreducible and aperiodic, then there is a unique stationary distribution π. [41]
A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.
In a strongly connected graph, if one defines a Markov chain on the vertices, in which the probability of transitioning from v to w is nonzero if and only if there is an edge from v to w, then this chain is aperiodic if and only if the graph is aperiodic. A Markov chain in which all states are recurrent has a strongly connected state transition ...
The stochastic matrix was developed alongside the Markov chain by Andrey Markov, a Russian mathematician and professor at St. Petersburg University who first published on the topic in 1906. [3] His initial intended uses were for linguistic analysis and other mathematical subjects like card shuffling , but both Markov chains and matrices rapidly ...
Due to the secret passageway, the Markov chain is also aperiodic, because the ghosts can move from any state to any state both in an even and in an uneven number of state transitions. Therefore, a unique stationary distribution exists and can be found by solving π Q = 0 {\displaystyle \pi Q=0} , subject to the constraint that elements must sum ...
Consider this figure depicting a section of a Markov chain with states i, j, k and l and the corresponding transition probabilities. Here Kolmogorov's criterion implies that the product of probabilities when traversing through any closed loop must be equal, so the product around the loop i to j to l to k returning to i must be equal to the loop the other way round,
Stationary distribution may refer to: . Discrete-time Markov chain § Stationary distributions and continuous-time Markov chain § Stationary distribution, a special distribution for a Markov chain such that if the chain starts with its stationary distribution, the marginal distribution of all states at any time will always be the stationary distribution.
In probability theory, the mixing time of a Markov chain is the time until the Markov chain is "close" to its steady state distribution.. More precisely, a fundamental result about Markov chains is that a finite state irreducible aperiodic chain has a unique stationary distribution π and, regardless of the initial state, the time-t distribution of the chain converges to π as t tends to infinity.