enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equivalence relation - Wikipedia

    en.wikipedia.org/wiki/Equivalence_relation

    For example, the natural numbers 2 and 6 have a common factor greater than 1, and 6 and 3 have a common factor greater than 1, but 2 and 3 do not have a common factor greater than 1. The empty relation R (defined so that aRb is never true) on a set X is vacuously symmetric and transitive; however, it is not reflexive (unless X itself is empty).

  3. Transitive relation - Wikipedia

    en.wikipedia.org/wiki/Transitive_relation

    The transitive extension of R 1 would be denoted by R 2, and continuing in this way, in general, the transitive extension of R i would be R i + 1. The transitive closure of R, denoted by R* or R ∞ is the set union of R, R 1, R 2, ... . [8] The transitive closure of a relation is a transitive relation. [8]

  4. List of sums of reciprocals - Wikipedia

    en.wikipedia.org/wiki/List_of_sums_of_reciprocals

    The sum of the reciprocals of the cubes of positive integers is called Apéry's constant ζ(3) , and equals approximately 1.2021 . This number is irrational, but it is not known whether or not it is transcendental. The reciprocals of the non-negative integer powers of 2 sum to 2 . This is a particular case of the sum of the reciprocals of any ...

  5. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  6. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    The square root of x is a partial inverse to f(x) = x 2. Even if a function f is not one-to-one, it may be possible to define a partial inverse of f by restricting the domain. For example, the function = is not one-to-one, since x 2 = (−x) 2.

  7. Reflexive relation - Wikipedia

    en.wikipedia.org/wiki/Reflexive_relation

    [1] [2] An example of a reflexive relation is the relation "is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity.

  8. Möbius transformation - Wikipedia

    en.wikipedia.org/wiki/Möbius_transformation

    The existence of the inverse Möbius transformation and its explicit formula are easily derived by the composition of the inverse functions of the simpler transformations. That is, define functions g 1, g 2, g 3, g 4 such that each g i is the inverse of f i.

  9. Closure (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closure_(mathematics)

    The transitive closure of a set. [1] The algebraic closure of a field. [2] The integral closure of an integral domain in a field that contains it. The radical of an ideal in a commutative ring. In geometry, the convex hull of a set S of points is the smallest convex set of which S is a subset. [3]