enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Legendre's conjecture - Wikipedia

    en.wikipedia.org/wiki/Legendre's_conjecture

    Legendre's conjecture, proposed by Adrien-Marie Legendre, states that there is a prime number between and (+) for every positive integer. [1] The conjecture is one of Landau's problems (1912) on prime numbers, and is one of many open problems on the spacing of prime numbers.

  3. Oppermann's conjecture - Wikipedia

    en.wikipedia.org/wiki/Oppermann's_conjecture

    and at least another prime between x 2 and x(x + 1). It can also be phrased equivalently as stating that the prime-counting function must take unequal values at the endpoints of each range. [3] That is: π (x 2 − x) < π (x 2) < π (x 2 + x) for x > 1. with π (x) being the number of prime numbers less than or equal to x.

  4. Sieve of Sundaram - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Sundaram

    The remaining numbers are doubled and incremented by one, giving a list of the odd prime numbers (that is, all primes except 2) below 2n + 2. The sieve of Sundaram sieves out the composite numbers just as the sieve of Eratosthenes does, but even numbers are not considered; the work of "crossing out" the multiples of 2 is done by the final ...

  5. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    The prime number race generalizes to other moduli and is the subject of much research; Pál Turán asked whether it is always the case that π c,a (x) and π c,b (x) change places when a and b are coprime to c. [34]

  6. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.

  7. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    Rowland (2008) proved that this sequence contains only ones and prime numbers. However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper ...

  8. Primes in arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Primes_in_arithmetic...

    In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes (3, 7, 11), which is given by a n = 3 + 4 n {\displaystyle a_{n}=3+4n} for 0 ≤ n ≤ 2 {\displaystyle 0\leq n\leq 2} .

  9. Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_postulate

    In number theory, Bertrand's postulate is the theorem that for any integer >, there exists at least one prime number with n < p < 2 n − 2. {\displaystyle n<p<2n-2.} A less restrictive formulation is: for every n > 1 {\displaystyle n>1} , there is always at least one prime p {\displaystyle p} such that