Search results
Results from the WOW.Com Content Network
Structural model at atomic resolution of bacteriophage T4 [1] The structure of a typical myovirus bacteriophage Anatomy and infection cycle of bacteriophage T4.. A bacteriophage (/ b æ k ˈ t ɪər i oʊ f eɪ dʒ /), also known informally as a phage (/ ˈ f eɪ dʒ /), is a virus that infects and replicates within bacteria and archaea.
Φ6 (Phi 6) is the best-studied bacteriophage of the virus family Cystoviridae. It infects Pseudomonas bacteria (typically plant-pathogenic P. syringae). It has a three-part, segmented, double-stranded RNA genome, totalling ~13.5 kb in length. Φ6 and its relatives have a lipid membrane around their nucleocapsid, a rare trait among bacteriophages.
Lysogeny, or the lysogenic cycle, is one of two cycles of viral reproduction (the lytic cycle being the other). Lysogeny is characterized by integration of the bacteriophage nucleic acid into the host bacterium's genome or formation of a circular replicon in the bacterial cytoplasm. In this condition the bacterium continues to live and ...
Benzer (1955 – 1959) developed a system for studying the fine structure of the gene using bacteriophage T4 mutants defective in the rIIA and rIIB genes. [21] [22] [23] The techniques employed were complementation tests and crosses to detect recombination, particularly between deletion mutations. These genetic experiments led to the finding of ...
A prophage is a bacteriophage (often shortened to "phage") genome that is integrated into the circular bacterial chromosome or exists as an extrachromosomal plasmid within the bacterial cell. [1] Integration of prophages into the bacterial host is the characteristic step of the lysogenic cycle of temperate phages.
Filamentous bacteriophages are a family of viruses (Inoviridae) that infect bacteria, or bacteriophages.They are named for their filamentous shape, a worm-like chain (long, thin, and flexible, reminiscent of a length of cooked spaghetti), about 6 nm in diameter and about 1000-2000 nm long.
For the virus to reproduce and thereby establish infection, it must enter cells of the host organism and use those cells' materials. To enter the cells, proteins on the surface of the virus interact with proteins of the cell.
Bacteria also live in mutualistic, commensal and parasitic relationships with plants and animals. Most bacteria have not been characterised and there are many species that cannot be grown in the laboratory. The study of bacteria is known as bacteriology, a branch of microbiology.