enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    The primes of the form 2n+1 are the odd primes, including all primes other than 2. Some sequences have alternate names: 4n+1 are Pythagorean primes, 4n+3 are the integer Gaussian primes, and 6n+5 are the Eisenstein primes (with 2 omitted). The classes 10n+d (d = 1, 3, 7, 9) are primes ending in the decimal digit d.

  3. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    No even number greater than 2 is prime because any such number can be expressed as the product /. Therefore, every prime number other than 2 is an odd number, and is called an odd prime. [10] Similarly, when written in the usual decimal system, all prime numbers larger than 5 end in 1, 3, 7, or 9. The numbers that end with other digits are all ...

  4. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    An even number has the prime factor 2. The first: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 (sequence A005843 in the OEIS). An odd number does not have the prime factor 2. The first: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 (sequence A005408 in the OEIS). All integers are either even or odd. A square has even multiplicity for all prime ...

  5. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    For instance, if m is odd, then n − m is also odd, and if m is even, then n − m is even, a non-trivial relation because, besides the number 2, only odd numbers can be prime. Similarly, if n is divisible by 3, and m was already a prime other than 3, then n − m would also be coprime to 3 and thus be slightly more likely to be prime than a ...

  6. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    Even numbers are always 0, 2, or 4 more than a multiple of 6, while odd numbers are always 1, 3, or 5 more than a multiple of 6. Well, one of those three possibilities for odd numbers causes an issue.

  7. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    On the other hand, the primes 3, 7, 11, 19, 23 and 31 are all congruent to 3 modulo 4, and none of them can be expressed as the sum of two squares. This is the easier part of the theorem, and follows immediately from the observation that all squares are congruent to 0 (if number squared is even) or 1 (if number squared is odd) modulo 4.

  8. Singly and doubly even - Wikipedia

    en.wikipedia.org/wiki/Singly_and_doubly_even

    A singly even number can be divided by 2 only once; it is even but its quotient by 2 is odd. A doubly even number is an integer that is divisible more than once by 2; it is even and its quotient by 2 is also even. The separate consideration of oddly and evenly even numbers is useful in many parts of mathematics, especially in number theory ...

  9. Euclid's lemma - Wikipedia

    en.wikipedia.org/wiki/Euclid's_lemma

    For example, in the case of p = 10, a = 4, b = 15, composite number 10 divides ab = 4 × 15 = 60, but 10 divides neither 4 nor 15. This property is the key in the proof of the fundamental theorem of arithmetic. [note 2] It is used to define prime elements, a generalization of prime numbers to arbitrary commutative rings.