Search results
Results from the WOW.Com Content Network
PJW hash / Elf Hash: 32 or 64 bits add,shift,xor MurmurHash: 32, 64, or 128 bits product/rotation Fast-Hash [3] 32 or 64 bits xorshift operations SpookyHash 32, 64, or 128 bits see Jenkins hash function: CityHash [4] 32, 64, 128, or 256 bits FarmHash [5] 32, 64 or 128 bits MetroHash [6] 64 or 128 bits numeric hash (nhash) [7] variable division ...
BLAKE repeatedly combines an 8-word hash value with 16 message words, truncating the ChaCha result to obtain the next hash value. BLAKE-256 and BLAKE-224 use 32-bit words and produce digest sizes of 256 bits and 224 bits, respectively, while BLAKE-512 and BLAKE-384 use 64-bit words and produce digest sizes of 512 bits and 384 bits, respectively.
The FNV_offset_basis is the 64-bit value: 14695981039346656037 (in hex, 0xcbf29ce484222325). The FNV_prime is the 64-bit value 1099511628211 (in hex, 0x100000001b3). The multiply returns the lower 64 bits of the product. The XOR is an 8-bit operation that modifies only the lower 8-bits of the hash value. The hash value returned is a 64-bit ...
MurmurHash is a non-cryptographic hash function suitable for general hash-based lookup. [1] [2] [3] It was created by Austin Appleby in 2008 [4] and, as of 8 January 2016, [5] is hosted on GitHub along with its test suite named SMHasher.
An Adler-32 checksum is obtained by calculating two 16-bit checksums A and B and concatenating their bits into a 32-bit integer. A is the sum of all bytes in the stream plus one, and B is the sum of the individual values of A from each step. At the beginning of an Adler-32 run, A is initialized to 1, B to 0.
Function Hash(message, digestSize) Inputs: message: Bytes (0..2 32-1) Message to be hashed digestSize: Integer (1..2 32) Desired number of bytes to be returned Output: digest: Bytes (digestSize) The resulting generated bytes, digestSize bytes long Hash is a variable-length hash function, built using Blake2b, capable of generating digests up to ...
The meaning of "small enough" depends on the size of the type that is used as the hashed value. For example, in Java, the hash code is a 32-bit integer. Thus the 32-bit integer Integer and 32-bit floating-point Float objects can simply use the value directly, whereas the 64-bit integer Long and 64-bit floating-point Double cannot.
HAVAL is a cryptographic hash function. Unlike MD5, but like most modern cryptographic hash functions, HAVAL can produce hashes of different lengths – 128 bits, 160 bits, 192 bits, 224 bits, and 256 bits. HAVAL also allows users to specify the number of rounds (3, 4, or 5) to be used to generate the hash. HAVAL was broken in 2004. [1]