enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron affinity - Wikipedia

    en.wikipedia.org/wiki/Electron_affinity

    The electron affinity of molecules is a complicated function of their electronic structure. For instance the electron affinity for benzene is negative, as is that of naphthalene, while those of anthracene, phenanthrene and pyrene are positive. In silico experiments show that the electron affinity of hexacyanobenzene surpasses that of fullerene. [5]

  3. Periodic trends - Wikipedia

    en.wikipedia.org/wiki/Periodic_trends

    In that case, the ionization energy decreases as atomic size increases due to adding a valence shell, thereby diminishing the nucleus's attraction to electrons. [12] [13] Ionization energy and electron affinity between two electronegative atoms (i.e., Chlorine and Bromine) decreases as the space between the valence shell and nucleus increases.

  4. Electron affinity (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_affinity_(data_page)

    First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion. The latter can be regarded as the ionization energy of the –1 ion or the zeroth ionization energy. [1]

  5. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    The difference of the energies of the HOMO and LUMO is called the HOMO-LUMO gap. This notion is often the matter of confusion in literature and should be considered with caution. Its value is usually located between the fundamental gap (difference between ionization potential and electron affinity) and the optical gap.

  6. Born–Haber cycle - Wikipedia

    en.wikipedia.org/wiki/Born–Haber_cycle

    The energy required to remove one or more electrons to make a cation is a sum of successive ionization energies; for example, the energy needed to form Mg 2+ is the ionization energy required to remove the first electron from Mg, plus the ionization energy required to remove the second electron from Mg +. Electron affinity is defined as the ...

  7. Koopmans' theorem - Wikipedia

    en.wikipedia.org/wiki/Koopmans'_theorem

    The corresponding ionization energies are 539.7, 32.2, 18.5, 14.7 and 12.6 eV. [10] As explained above, the deviations are due to the effects of orbital relaxation as well as differences in electron correlation energy between the molecular and the various ionized states.

  8. Chemical potential - Wikipedia

    en.wikipedia.org/wiki/Chemical_potential

    By inserting the energetic definitions of the ionization potential and electron affinity into the Mulliken electronegativity, it is seen that the Mulliken chemical potential is a finite difference approximation of the electronic energy with respect to the number of electrons, i.e.,

  9. Binding energy - Wikipedia

    en.wikipedia.org/wiki/Binding_energy

    The electron binding energy derives from the electromagnetic interaction of the electron with the nucleus and the other electrons of the atom, molecule or solid and is mediated by photons. Among the chemical elements, the range of ionization energies is from 3.8939 eV for the outermost electron in an atom of caesium to 11.567617 keV for the ...