enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chromatin - Wikipedia

    en.wikipedia.org/wiki/Chromatin

    The precise structure of the chromatin fiber in the cell is not known in detail. [10] This level of chromatin structure is thought to be the form of heterochromatin, which contains mostly transcriptionally silent genes. Electron microscopy studies have demonstrated that the 30 nm fiber is highly dynamic such that it unfolds into a 10 nm fiber ...

  3. Histone H2B - Wikipedia

    en.wikipedia.org/wiki/Histone_H2B

    Basic units of chromatin structure. Histone H2B is a structural protein that helps organize eukaryotic DNA. [5] It plays an important role in the biology of the nucleus where it is involved in the packaging and maintaining of chromosomes, [5] regulation of transcription, and replication and repair of DNA. [2]

  4. Solenoid (DNA) - Wikipedia

    en.wikipedia.org/wiki/Solenoid_(DNA)

    The solenoid structure's most obvious function is to help package the DNA so that it is small enough to fit into the nucleus. This is a big task as the nucleus of a mammalian cell has a diameter of approximately 6 μm, whilst the DNA in one human cell would stretch to just over 2 metres long if it were unwound. [6]

  5. Chromosome - Wikipedia

    en.wikipedia.org/wiki/Chromosome

    Chromatin structure is the more decondensed state, i.e. the 10-nm conformation allows transcription. [33] Heterochromatin vs. euchromatin. During interphase (the period of the cell cycle where the cell is not dividing), two types of chromatin can be distinguished: Euchromatin, which consists of DNA that is active, e.g., being expressed as protein.

  6. Euchromatin - Wikipedia

    en.wikipedia.org/wiki/Euchromatin

    Euchromatin (also called "open chromatin") is a lightly packed form of chromatin (DNA, RNA, and protein) that is enriched in genes, and is often (but not always) under active transcription. Euchromatin stands in contrast to heterochromatin, which is tightly packed and less accessible for transcription. 92% of the human genome is euchromatic. [1]

  7. H3K4me3 - Wikipedia

    en.wikipedia.org/wiki/H3K4me3

    H3K4me3 in embryonic cells is part of a bivalent chromatin system, in which regions of DNA are simultaneously marked with activating and repressing histone methylations. [13] This is believed to allow for a flexible system of gene expression, in which genes are primarily repressed, but may be expressed quickly due to H3K4me3 as the cell ...

  8. CTCF - Wikipedia

    en.wikipedia.org/wiki/CTCF

    CTCF binds to an average of about 55,000 DNA sites in 19 diverse cell types (12 normal and 7 immortal) and in total 77,811 distinct binding sites across all 19 cell types. [29] CTCF's ability to bind to multiple sequences through the usage of various combinations of its zinc fingers earned it the status of a “multivalent protein”. [ 5 ]

  9. Kinetochore - Wikipedia

    en.wikipedia.org/wiki/Kinetochore

    Kinetochore structure and components in vertebrate cells. Based on Maiato et al. (2004). [9] The deepest layer in the kinetochore is the inner plate, which is organized on a chromatin structure containing nucleosomes presenting a specialized histone (named CENP-A, which substitutes histone H3 in this region