Search results
Results from the WOW.Com Content Network
NTC thermistors are widely used as inrush-current limiters and temperature sensors, while PTC thermistors are used as self-resetting overcurrent protectors and self-regulating heating elements. An operational temperature range of a thermistor is dependent on the probe type and is typically between −100 and 300 °C (−148 and 572 °F).
Triphenyl tetrazolium chloride (TTC), or simply tetrazolium chloride (with the formula 2,3,5-triphenyl-2H-tetrazolium chloride) is a redox indicator commonly used in biochemical experiments especially to indicate cellular respiration. It is a white crystalline powder, soluble in water, ethanol and acetone but insoluble in ether.
Another type of thermal switch is a PTC (Positive Temperature Coefficient) thermistor; these thermistors have a "cutting off" temperature at which the resistance suddenly rises rapidly, limiting the current through the circuit. When used in conjunction with a thermistor relay, the PTC will switch off an electrical system at a desired temperature.
The equation model converts the resistance actually measured in a thermistor to its theoretical bulk temperature, with a closer approximation to actual temperature than simpler models, and valid over the entire working temperature range of the sensor.
However, thermistors have a smaller temperature range and stability. ... Typ: 103 NTC Typ: 104 NTC Typ: 105 −50 79.901192 80.31 803.1 1032 −45 81.925089
An inrush current limiter is a device or devices combination used to limit inrush current. Passive resistive components such as resistors (with power dissipation drawback), or negative temperature coefficient (NTC) thermistors are simple options while the positive one (PTC) is used to limit max current afterward as the circuit has been operating (with cool-down time drawback on both).
The microcontroller's analog-to-digital converter is connected to the center tap of the divider so that it can measure the tap voltage and, by using the measured voltage and the known resistance and voltage, compute the sensor resistance. This technique is commonly used to measure the resistance of temperature sensors such as thermistors and RTDs.
Thermopiles are used to provide an output in response to temperature as part of a temperature measuring device, such as the infrared thermometers widely used by medical professionals to measure body temperature, or in thermal accelerometers to measure the temperature profile inside the sealed cavity of the sensor. [4]