Search results
Results from the WOW.Com Content Network
There are two reasons actual sales can vary from planned sales: either the volume sold varied from the expected quantity, known as sales volume variance, or the price point at which units were sold differed from the expected price points, known as sales price variance. Both scenarios could also simultaneously contribute to the variance.
Variance analysis can be carried out for both costs and revenues. Variance analysis is usually associated with explaining the difference (or variance) between actual costs and the standard costs allowed for the good output. For example, the difference in materials costs can be divided into a materials price variance and a materials usage variance.
The sum of squared deviations is a key component in the calculation of variance, another measure of the spread or dispersion of a data set. Variance is calculated by averaging the squared deviations. Deviation is a fundamental concept in understanding the distribution and variability of data points in statistical analysis. [1]
In statistics, the variance function is a smooth function that depicts the variance of a random quantity as a function of its mean.The variance function is a measure of heteroscedasticity and plays a large role in many settings of statistical modelling.
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. [1] Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered.
A pivot table field list is provided to the user which lists all the column headers present in the data. For instance, if a table represents sales data of a company, it might include Date of sale, Sales person, Item sold, Color of item, Units sold, Per unit price, and Total price. This makes the data more readily accessible.
Fay's method is a generalization of BRR. Instead of simply taking half-size samples, we use the full sample every time but with unequal weighting: k for units outside the half-sample and 2 − k for units inside it. (BRR is the case k = 0.) The variance estimate is then V/(1 − k) 2, where V is the estimate given by the BRR formula above.