Search results
Results from the WOW.Com Content Network
As of the 2019 revision of the SI, the ampere is defined by fixing the elementary charge e to be exactly 1.602 176 634 × 10 −19 C, [6] [9] which means an ampere is an electric current equivalent to 10 19 elementary charges moving every 1.602 176 634 seconds or 6.241 509 074 × 10 18 elementary charges moving in a second.
ampere (A) moment of inertia: kilogram meter squared (kg⋅m 2) intensity: watt per square meter (W/m 2) imaginary unit: unitless electric current: ampere (A) ^ Cartesian x-axis basis unit vector unitless current density: ampere per square meter (A/m 2) impulse
Ampere balance, an electromechanical apparatus for precise measurement of the ampere Ampère's circuital law , a rule relating the current in a conductor to the magnetic field around it Ampère's force law , the force of attraction or repulsion between two current-carrying wires
The best-known and simplest example of Ampère's force law, which underlaid (before 20 May 2019 [1]) the definition of the ampere, the SI unit of electric current, states that the magnetic force per unit length between two straight parallel conductors is =,
Symbol [1] Name of quantity Unit name Symbol Base units E energy: joule: J = C⋅V = W⋅s kg⋅m 2 ⋅s −2: Q electric charge: coulomb: C A⋅s I electric current: ampere
The source free equations can be written by the action of the exterior derivative on this 2-form. But for the equations with source terms (Gauss's law and the Ampère-Maxwell equation), the Hodge dual of this 2-form is needed. The Hodge star operator takes a p-form to a (n − p)-form, where n is the number of dimensions.
The SI base units, or Systéme International d'unités, consists of the metre, kilogram, second, ampere, kelvin, mole and candela. A unit multiple (or multiple of a unit) is an integer multiple of a given unit; likewise a unit submultiple (or submultiple of a unit) is a submultiple or a unit fraction of a given unit. [1]
L −2 M −1 T 3 I 2: scalar Electrical conductivity: σ: Measure of a material's ability to conduct an electric current S/m L −3 M −1 T 3 I 2: scalar Electric potential: φ: Energy required to move a unit charge through an electric field from a reference point volt (V = J/C) L 2 M T −3 I −1: extensive, scalar Electrical resistance: R