enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lambda lifting - Wikipedia

    en.wikipedia.org/wiki/Lambda_lifting

    In contrast, closure conversion does not require call sites to be adjusted but does introduce a closure for the lambda expression mapping free variables to values. The technique may be used on individual functions, in code refactoring, to make a function usable outside the scope in which it was written. Lambda lifts may also be repeated, in ...

  3. Higher-order programming - Wikipedia

    en.wikipedia.org/wiki/Higher-order_programming

    Higher-order programming is a style of computer programming that uses software components, like functions, modules or objects, as values. It is usually instantiated with, or borrowed from, models of computation such as lambda calculus which make heavy use of higher-order functions. A programming language can be considered higher-order if ...

  4. Fixed-point combinator - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_combinator

    In this case particular lambda terms (which define functions) are considered as values. "Running" (beta reducing) the fixed-point combinator on the encoding gives a lambda term for the result which may then be interpreted as fixed-point value. Alternately, a function may be considered as a lambda term defined purely in lambda calculus.

  5. de Bruijn index - Wikipedia

    en.wikipedia.org/wiki/De_Bruijn_index

    This eliminates the need to reindex free variables, for example when weakening the context, whereas de Bruijn indices eliminate the need to reindex bound variables, for example when substituting a closed expression in another context. [3] De Bruijn indices are not the only representation of λ-terms that obviates the problem of α-conversion.

  6. Church encoding - Wikipedia

    en.wikipedia.org/wiki/Church_encoding

    For example, a list of three elements x, y and z can be encoded by a higher-order function that when applied to a combinator c and a value n returns c x (c y (c z n)). Equivalently, it is an application of the chain of functional compositions of partial applications, (c x ∘ c y ∘ c z) n.

  7. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    For example, in simply typed lambda calculus, it is a theorem that every evaluation strategy terminates for every simply typed lambda-term, whereas evaluation of untyped lambda-terms need not terminate (see below). One reason there are many different typed lambda calculi has been the desire to do more (of what the untyped calculus can do ...

  8. Simply typed lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Simply_typed_lambda_calculus

    In the 1930s Alonzo Church sought to use the logistic method: [a] his lambda calculus, as a formal language based on symbolic expressions, consisted of a denumerably infinite series of axioms and variables, [b] but also a finite set of primitive symbols, [c] denoting abstraction and scope, as well as four constants: negation, disjunction, universal quantification, and selection respectively ...

  9. Lambda calculus definition - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus_definition

    The purpose of β-reduction is to calculate a value. A value in lambda calculus is a function. So β-reduction continues until the expression looks like a function abstraction. A lambda expression that cannot be reduced further, by either β-redex, or η-redex is in normal form. Note that alpha-conversion may convert functions.