Search results
Results from the WOW.Com Content Network
Mineral Resources are further sub-divided, in order of increasing geological confidence, into inferred, indicated and measured as categories. Inferred Mineral Resource is the part of a mineral resource for which quantity, grade (or quality) and mineral content can be estimated with a low level of confidence. It is inferred from geological ...
Inside each isosceles triangle the pair of base angles are equal to each other, and are half of 180° minus the apex angle at the circle's center. Adding up these isosceles base angles yields the theorem, namely that the inscribed angle, ψ, is half the central angle, θ.
The extended base of a triangle (a particular case of an extended side) is the line that contains the base. When the triangle is obtuse and the base is chosen to be one of the sides adjacent to the obtuse angle, then the altitude dropped perpendicularly from the apex to the base intersects the extended base outside of the triangle. The area of ...
The Calabi triangle is a special isosceles triangle with the property that the other two inscribed squares, with sides collinear with the sides of the triangle, are of the same size as the base square. [11] A much older theorem, preserved in the works of Hero of Alexandria, states that, for an isosceles triangle with base and height , the side ...
The six trigonometric functions are defined for every real number, except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°). Referring to the diagram at the right, the six trigonometric functions of θ are, for angles smaller than the right angle:
The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.
Solid angles can also be measured in square degrees (1 sr = (180/ π) 2 square degrees), in square arc-minutes and square arc-seconds, or in fractions of the sphere (1 sr = 1 / 4 π fractional area), also known as spat (1 sp = 4 π sr). In spherical coordinates there is a formula for the differential,
The term "isometric" comes from the Greek for "equal measure", reflecting that the scale along each axis of the projection is the same (unlike some other forms of graphical projection). An isometric view of an object can be obtained by choosing the viewing direction such that the angles between the projections of the x , y , and z axes are all ...