enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tree rotation - Wikipedia

    en.wikipedia.org/wiki/Tree_rotation

    This makes tree rotations useful for rebalancing a tree. Consider the terminology of Root for the parent node of the subtrees to rotate, Pivot for the node which will become the new parent node, RS for the side of rotation and OS for the opposite side of rotation. For the root Q in the diagram above, RS is C and OS is P. Using these terms, the ...

  3. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.

  4. Rotation distance - Wikipedia

    en.wikipedia.org/wiki/Rotation_distance

    The flip graphs of a pentagon and a hexagon, corresponding to rotations of three-node and four-node binary trees. Given a family of triangulations of some geometric object, a flip is an operation that transforms one triangulation to another by removing an edge between two triangles and adding the opposite diagonal to the resulting quadrilateral.

  5. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    rotates points in the xy plane counterclockwise through an angle θ about the origin of a two-dimensional Cartesian coordinate system. To perform the rotation on a plane point with standard coordinates v = (x, y), it should be written as a column vector, and multiplied by the matrix R:

  6. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    The rotation is acting to rotate an object counterclockwise through an angle θ about the origin; see below for details. Composition of rotations sums their angles modulo 1 turn, which implies that all two-dimensional rotations about the same point commute. Rotations about different points, in general, do not commute.

  7. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  8. Tree girth measurement - Wikipedia

    en.wikipedia.org/wiki/Tree_girth_measurement

    Consider, the tree started as a single sprout and grew upward and outward from that point. This is the point where the pith of the tree would intersect the ground surface supporting the tree. This is the logical base point from which to measure the height of the tree and by extension the girth should be measured with respect to the same base point.

  9. Axis–angle representation - Wikipedia

    en.wikipedia.org/wiki/Axis–angle_representation

    The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...