enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Avogadro constant - Wikipedia

    en.wikipedia.org/wiki/Avogadro_constant

    The Avogadro constant, commonly denoted N A [1] or L, [2] is an SI defining constant with an exact value of 6.022 140 76 × 10 23 mol −1 (reciprocal moles). [3] [4] It is this defined number of constituent particles (usually molecules, atoms, ions, or ion pairs—in general, entities) per mole and used as a normalization factor in relating the amount of substance, n(X), in a sample of a ...

  3. Avogadro's law - Wikipedia

    en.wikipedia.org/wiki/Avogadro's_Law

    Avogadro's law provides a way to calculate the quantity of gas in a receptacle. Thanks to this discovery, Johann Josef Loschmidt, in 1865, was able for the first time to estimate the size of a molecule. [9] His calculation gave rise to the concept of the Loschmidt constant, a ratio between macroscopic

  4. List of physical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_constants

    These include the Boltzmann constant, which gives the correspondence of the dimension temperature to the dimension of energy per degree of freedom, and the Avogadro constant, which gives the correspondence of the dimension of amount of substance with the dimension of count of entities (the latter formally regarded in the SI as being dimensionless).

  5. Faraday constant - Wikipedia

    en.wikipedia.org/wiki/Faraday_constant

    Since the 2019 revision of the SI, [1] the Faraday constant has an exactly defined value, the product of the elementary charge (e, in coulombs) and the Avogadro constant (N A, in reciprocal moles): F = e × N A = 1.602 176 634 × 10 −19 C × 6.022 140 76 × 10 23 mol −1 = 9.648 533 212 331 001 84 × 10 4 C⋅mol −1.

  6. Number density - Wikipedia

    en.wikipedia.org/wiki/Number_density

    For any substance, the number density can be expressed in terms of its amount concentration c (in mol/m 3) as = where N A is the Avogadro constant. This is still true if the spatial dimension unit, metre, in both n and c is consistently replaced by any other spatial dimension unit, e.g. if n is in cm −3 and c is in mol/cm 3 , or if n is in L ...

  7. Cubic equations of state - Wikipedia

    en.wikipedia.org/wiki/Cubic_equations_of_state

    The van der Waals equation of state may be written as (+) =where is the absolute temperature, is the pressure, is the molar volume and is the universal gas constant.Note that = /, where is the volume, and = /, where is the number of moles, is the number of particles, and is the Avogadro constant.

  8. Charge carrier density - Wikipedia

    en.wikipedia.org/wiki/Charge_carrier_density

    Since metals can display multiple oxidation numbers, the exact definition of how many "valence electrons" an element should have in elemental form is somewhat arbitrary, but the following table lists the free electron densities given in Ashcroft and Mermin, which were calculated using the formula above based on reasonable assumptions about ...

  9. Stoichiometry - Wikipedia

    en.wikipedia.org/wiki/Stoichiometry

    The number of molecules per mole in a substance is given by the Avogadro constant, exactly 6.022 140 76 × 10 23 mol −1 since the 2019 revision of the SI. Thus, to calculate the stoichiometry by mass, the number of molecules required for each reactant is expressed in moles and multiplied by the molar mass of each to give the mass of each ...