Search results
Results from the WOW.Com Content Network
The two primary methods of deformation in metals are slip and twinning. Slip occurs by dislocation glide of either screw or edge dislocations within a slip plane. Slip is by far the most common mechanism. Twinning is less common but readily occurs under some circumstances. Twinning occurs when there are not enough slip systems to accommodate ...
Slip is a shear deformation which moves the atoms through many interatomic distances relative to their initial positions. Twinning is the plastic deformation which takes place along two planes due to a set of forces applied to a given metal piece. Most metals show more plasticity when hot than when cold.
Sample deformation mechanism map for a hypothetical material. Here there are three main regions: plasticity, power law creep, and diffusional flow. A deformation mechanism map is a way of representing the dominant deformation mechanism in a material loaded under a given set of conditions. The technique is applicable to all crystalline materials ...
Unit cell of an fcc material. Lattice configuration of the close packed slip plane in an fcc material. The arrow represents the Burgers vector in this dislocation glide system. Slip in face centered cubic (fcc) crystals occurs along the close packed plane. Specifically, the slip plane is of type , and the direction is of type < 1 10>.
However, in anisotropic materials, for example wood, these values may not be equivalent. Moreover, composite materials like fiber-reinforced polymers [ 4 ] [ 3 ] or biological tissues [ 5 ] are inhomogeneous combinations of two or more materials, each with different material properties, therefore their tensile, compressive, and flexural moduli ...
Deformation twinning is a response to shear stress. The crystal structure is displaced along successive planes of the crystal, a process also called glide. The twinning is always reflection twinning and the glide plane is also the mirror plane. Deformation twinning can be observed in a calcite cleavage fragment by applying gentle pressure with ...
All compression simulations were done after setting the periodic boundary conditions across the three orthogonal directions. It was found that when the grain size is below 12.1 nm the inverse Hall–Petch relation was observed. This is because as the grain size decreases partial dislocations become less prominent and so as deformation twinning.
An example of a material with a large plastic deformation range is wet chewing gum, which can be stretched to dozens of times its original length. Under tensile stress, plastic deformation is characterized by a strain hardening region and a necking region and finally, fracture (also called rupture).