enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Green's theorem - Wikipedia

    en.wikipedia.org/wiki/Green's_theorem

    In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in ). In one dimension, it is equivalent to the fundamental theorem of calculus.

  3. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    In mathematics, a Green's function (sometimes improperly termed a Green function) is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions. This means that if is a linear differential operator, then

  4. Green's identities - Wikipedia

    en.wikipedia.org/wiki/Green's_identities

    This identity is derived from the divergence theorem applied to the vector field F = ψ ∇φ while using an extension of the product rule that ∇ ⋅ (ψ X) = ∇ψ ⋅X + ψ ∇⋅X: Let φ and ψ be scalar functions defined on some region U ⊂ R d, and suppose that φ is twice continuously differentiable, and ψ is once continuously differentiable.

  5. Poisson's electrical and magnetical investigations were generalized and extended in 1828 by George Green. Green's treatment is based on the properties of the function already used by Lagrange, Laplace, and Poisson, which represents the sum of all the electric or magnetic charges in the field, divided by their respective distances from some given point: to this function Green gave the name ...

  6. Green's function (many-body theory) - Wikipedia

    en.wikipedia.org/wiki/Green's_function_(many-body...

    In many-body theory, the term Green's function (or Green function) is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators. The name comes from the Green's functions used to solve inhomogeneous differential equations, to which they are loosely ...

  7. Green's function for the three-variable Laplace equation

    en.wikipedia.org/wiki/Green's_function_for_the...

    Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in order to determine the potential function. Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation ...

  8. Exterior derivative - Wikipedia

    en.wikipedia.org/wiki/Exterior_derivative

    The integral of η V along a path is the work done against −V along that path. When n = 3 , in three-dimensional space, the exterior derivative of the 1 -form η V is the 2 -form d η V = ω curl ⁡ V . {\displaystyle d\eta _{V}=\omega _{\operatorname {curl} V}.}

  9. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]