enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  3. Decision stump - Wikipedia

    en.wikipedia.org/wiki/Decision_stump

    That is, it is a decision tree with one internal node (the root) which is immediately connected to the terminal nodes (its leaves). A decision stump makes a prediction based on the value of just a single input feature. Sometimes they are also called 1-rules. [2] Depending on the type of the input feature, several variations are possible.

  4. Discrete-event simulation - Wikipedia

    en.wikipedia.org/wiki/Discrete-event_simulation

    Each of these events comes with its own dynamics defined by the following event routines: When a Customer-Arrival event occurs, the state variable queue-length is incremented by 1, and if the state variable teller-status has the value "available", a Service-Start follow-up event is scheduled to happen without any delay, such that the newly ...

  5. One in ten rule - Wikipedia

    en.wikipedia.org/wiki/One_in_ten_rule

    More recently, a study has shown that the ratio of events per predictive variable is not a reliable statistic for estimating the minimum number of events for estimating a logistic prediction model. [8] Instead, the number of predictor variables, the total sample size (events + non-events) and the events fraction (events / total sample size) can ...

  6. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    To calculate the recall for a given class, we divide the number of true positives by the prevalence of this class (number of times that the class occurs in the data sample). The class-wise precision and recall values can then be combined into an overall multi-class evaluation score, e.g., using the macro F1 metric. [21]

  7. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    Keras is an open-source library that provides a Python interface for artificial neural networks. Keras was first independent software, then integrated into the TensorFlow library, and later supporting more. "Keras 3 is a full rewrite of Keras [and can be used] as a low-level cross-framework language to develop custom components such as layers ...

  8. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    Each of the parts is then set aside at turn as a test set, a clustering model computed on the other v − 1 training sets, and the value of the objective function (for example, the sum of the squared distances to the centroids for k-means) calculated for the test set. These v values are calculated and averaged for each alternative number of ...

  9. Neural architecture search - Wikipedia

    en.wikipedia.org/wiki/Neural_architecture_search

    Neural architecture search (NAS) [1] [2] is a technique for automating the design of artificial neural networks (ANN), a widely used model in the field of machine learning.NAS has been used to design networks that are on par with or outperform hand-designed architectures.