Search results
Results from the WOW.Com Content Network
A translation moves every point of a figure or a space by the same amount in a given direction. In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction.
This section features terms used across different areas in mathematics, or terms that do not typically appear in more specialized glossaries. For the terms used only in some specific areas of mathematics, see glossaries in Category:Glossaries of mathematics .
A walk can involve translation only, or translation and problem solving. For example, considering a window on a building involves first perceiving the window. After perception, there is a translation of the form of the window to mathematical language, such as the array ( w , l ) {\displaystyle (w,l)} where w {\displaystyle w} is the window's ...
Domain-specific terms must be recategorized into the corresponding mathematical domain. If the domain is unclear, but reasonably believed to exist, it is better to put the page into the root category:mathematics, where it will have a better chance of spotting and classification. See also: Glossary of mathematics
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Rote learning: the teaching of mathematical results, definitions and concepts by repetition and memorisation typically without meaning or supported by mathematical reasoning. A derisory term is drill and kill. In traditional education, rote learning is used to teach multiplication tables, definitions, formulas, and other aspects of mathematics.
For example: "All humans are mortal, and Socrates is a human. ∴ Socrates is mortal." ∵ Abbreviation of "because" or "since". Placed between two assertions, it means that the first one is implied by the second one. For example: "11 is prime ∵ it has no positive integer factors other than itself and one." ∋ 1. Abbreviation of "such that".
def – define or definition. deg – degree of a polynomial, or other recursively-defined objects such as well-formed formulas. (Also written as ∂.) del – del, a differential operator. (Also written as.) det – determinant of a matrix or linear transformation. DFT – discrete Fourier transform.