enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Green's theorem - Wikipedia

    en.wikipedia.org/wiki/Green's_theorem

    In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C.It is the two-dimensional special case of Stokes' theorem (surface in ).

  3. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    In mathematics, a Green's function (sometimes improperly termed a Green function) is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions. This means that if is a linear differential operator, then

  4. Symmetry of second derivatives - Wikipedia

    en.wikipedia.org/wiki/Symmetry_of_second_derivatives

    In mathematical analysis, Schwarz's theorem (or Clairaut's theorem on equality of mixed partials) [9] named after Alexis Clairaut and Hermann Schwarz, states that for a function : defined on a set , if is a point such that some neighborhood of is contained in and has continuous second partial derivatives on that neighborhood of , then for all i ...

  5. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.

  6. Green's identities - Wikipedia

    en.wikipedia.org/wiki/Green's_identities

    In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green , who discovered Green's theorem .

  7. Herein also his remarkable theorem in pure mathematics, since universally known as Green's theorem, and probably the most important instrument of investigation in the whole range of mathematical physics, made its appearance. We are all now able to understand, in a general way at least, the importance of Green's work, and the progress made since ...

  8. Green's function for the three-variable Laplace equation

    en.wikipedia.org/wiki/Green's_function_for_the...

    Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in order to determine the potential function. Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation ...

  9. Green's function (many-body theory) - Wikipedia

    en.wikipedia.org/wiki/Green's_function_(many-body...

    In many-body theory, the term Green's function (or Green function) is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators. The name comes from the Green's functions used to solve inhomogeneous differential equations, to which they are loosely ...