Search results
Results from the WOW.Com Content Network
The positive integer n is called the index or degree, and the number x of which the root is taken is the radicand. A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction.
To compute the integral, we set n to its value and use the reduction formula to express it in terms of the (n – 1) or (n – 2) integral. The lower index integral can be used to calculate the higher index ones; the process is continued repeatedly until we reach a point where the function to be integrated can be computed, usually when its index is 0 or 1.
The term (or number) whose square root is being considered is known as the radicand. The radicand is the number or expression underneath the radical sign, in this case, 9. For non-negative x, the principal square root can also be written in exponent notation, as /.
The function is multiplicative (but not completely multiplicative).. The radical of any integer is the largest square-free divisor of and so also described as the square-free kernel of . [2]
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.
Laguerre's method may even converge to a complex root of the polynomial, because the radicand of the square root may be of a negative number, in the formula for the correction, , given above – manageable so long as complex numbers can be conveniently accommodated for the calculation. This may be considered an advantage or a liability ...
In ancient Roman architecture, Vitruvius describes the use of the square root of 2 progression or ad quadratum technique. It consists basically in a geometric, rather than arithmetic, method to double a square, in which the diagonal of the original square is equal to the side of the resulting square.
the quantity which appears under the square root in the quadratic formula. If a ≠ 0 , {\displaystyle a\neq 0,} this discriminant is zero if and only if the polynomial has a double root . In the case of real coefficients, it is positive if the polynomial has two distinct real roots, and negative if it has two distinct complex conjugate roots ...