Search results
Results from the WOW.Com Content Network
The case where the system dynamics are described by a set of linear differential equations and the cost is described by a quadratic function is called the LQ problem. One of the main results in the theory is that the solution is provided by the linear–quadratic regulator (LQR), a feedback controller whose equations are given below.
This control law which is known as the LQG controller, is unique and it is simply a combination of a Kalman filter (a linear–quadratic state estimator (LQE)) together with a linear–quadratic regulator (LQR). The separation principle states that the state estimator and the state feedback can be designed independently.
With multiple state variables and multiple control variables, the Riccati equation will be a matrix equation. The algebraic Riccati equation determines the solution of the infinite-horizon time-invariant Linear-Quadratic Regulator problem (LQR) as well as that of the infinite horizon time-invariant Linear-Quadratic-Gaussian control problem (LQG
A set of differential equations forms a physics engine which maps the control input to the state space of the system. The forward model is able to simulate the given domain. For example, if the user pushes a cart to the left, a pendulum mounted on the cart will react with a motion. The exact force is determined by newton's laws of motion.
The Kalman filter, the linear-quadratic regulator, and the linear–quadratic–Gaussian controller are solutions to what arguably are the most fundamental problems of control theory. In most applications, the internal state is much larger (has more degrees of freedom ) than the few "observable" parameters which are measured.
More generally, the term Riccati equation is used to refer to matrix equations with an analogous quadratic term, which occur in both continuous-time and discrete-time linear-quadratic-Gaussian control. The steady-state (non-dynamic) version of these is referred to as the algebraic Riccati equation.
The process of determining the equations that govern the model's dynamics is called system identification. This can be done off-line: for example, executing a series of measures from which to calculate an approximated mathematical model, typically its transfer function or matrix. Such identification from the output, however, cannot take account ...
The poles of the FSF system are given by the characteristic equation of the matrix , [()] =. Comparing the terms of this equation with those of the desired characteristic equation yields the values of the feedback matrix K {\displaystyle {\textbf {K}}} which force the closed-loop eigenvalues to the pole locations specified by the desired ...