Search results
Results from the WOW.Com Content Network
The Burt table is the symmetric matrix of all two-way cross-tabulations between the categorical variables, and has an analogy to the covariance matrix of continuous variables. Analyzing the Burt table is a more natural generalization of simple correspondence analysis , and individuals or the means of groups of individuals can be added as ...
This is a list of statistical procedures which can be used for the analysis of categorical data, also known as data on the nominal scale and as categorical variables. General tests [ edit ]
function draw_categorical(n) // where n is the number of samples to draw from the categorical distribution r = 1 s = 0 for i from 1 to k // where k is the number of categories v = draw from a binomial(n, p[i] / r) distribution // where p[i] is the probability of category i for j from 1 to v z[s++] = i // where z is an array in which the results ...
The following table classifies the various simple data types, associated distributions, permissible operations, etc. Regardless of the logical possible values, all of these data types are generally coded using real numbers, because the theory of random variables often explicitly assumes that they hold real numbers.
Early work on statistical classification was undertaken by Fisher, [1] [2] in the context of two-group problems, leading to Fisher's linear discriminant function as the rule for assigning a group to a new observation. [3] This early work assumed that data-values within each of the two groups had a multivariate normal distribution.
A categorical variable that can take on exactly two values is termed a binary variable or a dichotomous variable; an important special case is the Bernoulli variable. Categorical variables with more than two possible values are called polytomous variables; categorical variables are often assumed to be polytomous unless otherwise specified.
Latin hypercube sampling (LHS) is a statistical method for generating a near-random sample of parameter values from a multidimensional distribution. The sampling method is often used to construct computer experiments or for Monte Carlo integration. [1] LHS was described by Michael McKay of Los Alamos National Laboratory in 1979. [1]
Values greater than 5/9 may indicate a bimodal or multimodal distribution, though corresponding values can also result for heavily skewed unimodal distributions. [28] The maximum value (1.0) is reached only by a Bernoulli distribution with only two distinct values or the sum of two different Dirac delta functions (a bi-delta distribution).