Search results
Results from the WOW.Com Content Network
A cycloaddition is a reaction that simultaneously forms at least two new bonds, and in doing so, converts two or more open-chain molecules into rings. [3] The transition states for these reactions typically involve the electrons of the molecules moving in continuous rings, making it a pericyclic reaction.
Diagram of the HOMO and LUMO of a molecule. Each circle represents an electron in an orbital; when light of a high enough frequency is absorbed by an electron in the HOMO, it jumps to the LUMO. 3D model of the highest occupied molecular orbital in CO 2 3D model of the lowest unoccupied molecular orbital in CO 2
Molecular orbital theory was seen as a competitor to valence bond theory in the 1930s, before it was realized that the two methods are closely related and that when extended they become equivalent. Molecular orbital theory is used to interpret ultraviolet–visible spectroscopy (UV–VIS). Changes to the electronic structure of molecules can be ...
The molecule retains its molecular geometry as the frontier orbital points in the direction of the missing hydrogen atom. Further removal of hydrogen results in the formation of a second frontier orbital. This process can be repeated until only one bond remains to the molecule's central atom.
The frontier orbital interactions involved in the Prilezhaev reaction. The reaction proceeds through what is commonly known as the "butterfly mechanism", first proposed by Bartlett, wherein the peracid is intramolecularly hydrogen-bonded at the transition state. [5]
The Fukui function is named after Kenichi Fukui, who investigated the frontier orbitals described by the function, specifically the HOMO and LUMO. [3] Fukui functions are related in part to the frontier molecular orbital theory (also known as the Fukui theory of reactivity and selection, also developed by Kenichi Fukui) which discusses how nucleophiles attack the HOMO while at the same time ...
According to the frontier molecular orbital theory, the sigma bond in the ring will open in such a way that the resulting p-orbitals will have the same symmetry as the HOMO of the product. [4] For the 5,6-dimethylcyclohexa-1,3-diene, only a disrotatory mode would result in p-orbitals having the same symmetry as the HOMO of hexatriene.
Frontier molecular orbital theory has also been used to explain the regioselectivity patterns observed in Diels–Alder reactions of substituted systems. Calculation of the energy and orbital coefficients of the components' frontier orbitals [ 17 ] provides a picture that is in good accord with the more straightforward analysis of the ...