enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Condorcet's jury theorem - Wikipedia

    en.wikipedia.org/wiki/Condorcet's_jury_theorem

    Probabilities range from 0 (= the vote is always wrong) to 1 (= always right). Each person decides independently, so the probabilities of their decisions multiply. The probability of each correct decision is p. The probability of an incorrect decision, q, is the opposite of p, i.e. 1 − p.

  3. Urn problem - Wikipedia

    en.wikipedia.org/wiki/Urn_problem

    In this basic urn model in probability theory, the urn contains x white and y black balls, well-mixed together. One ball is drawn randomly from the urn and its color observed; it is then placed back in the urn (or not), and the selection process is repeated. [3] Possible questions that can be answered in this model are:

  4. Proofs of convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_convergence_of...

    Each of the probabilities on the right-hand side converge to zero as n → ∞ by definition of the convergence of {X n} and {Y n} in probability to X and Y respectively. Taking the limit we conclude that the left-hand side also converges to zero, and therefore the sequence {(X n, Y n)} converges in probability to {(X, Y)}.

  5. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    In other words, if X n converges in probability to X sufficiently quickly (i.e. the above sequence of tail probabilities is summable for all ε > 0), then X n also converges almost surely to X. This is a direct implication from the Borel–Cantelli lemma. If S n is a sum of n real independent random variables:

  6. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  7. Conditional probability table - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability_table

    The first column sum is the probability that x =0 and y equals any of the values it can have – that is, the column sum 6/9 is the marginal probability that x=0. If we want to find the probability that y=0 given that x=0, we compute the fraction of the probabilities in the x=0 column that have the value y=0, which is 4/9 ÷ 6/9 = 4/6. Likewise ...

  8. Sum of normally distributed random variables - Wikipedia

    en.wikipedia.org/wiki/Sum_of_normally...

    This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]

  9. Algebra of random variables - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_random_variables

    E[X * X] ≥ 0 for all random variables X; E[X + Y] = E[X] + E[Y] for all random variables X and Y; and; E[kX] = kE[X] if k is a constant. One may generalize this setup, allowing the algebra to be noncommutative. This leads to other areas of noncommutative probability such as quantum probability, random matrix theory, and free probability.