Search results
Results from the WOW.Com Content Network
In this basic urn model in probability theory, the urn contains x white and y black balls, well-mixed together. One ball is drawn randomly from the urn and its color observed; it is then placed back in the urn (or not), and the selection process is repeated. [3] Possible questions that can be answered in this model are:
Probabilities range from 0 (= the vote is always wrong) to 1 (= always right). Each person decides independently, so the probabilities of their decisions multiply. The probability of each correct decision is p. The probability of an incorrect decision, q, is the opposite of p, i.e. 1 − p.
In other words, if X n converges in probability to X sufficiently quickly (i.e. the above sequence of tail probabilities is summable for all ε > 0), then X n also converges almost surely to X. This is a direct implication from the Borel–Cantelli lemma. If S n is a sum of n real independent random variables:
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
For the Odd player, the expected payoff when playing Heads is + and when playing Tails + (where is Even's probability of playing Heads), and these must be equal, so =. Note that since x {\displaystyle x} is the Heads-probability of Odd and y {\displaystyle y} is the Heads-probability of Even , the change in Even's payoff affects Odd's ...
The first column sum is the probability that x =0 and y equals any of the values it can have – that is, the column sum 6/9 is the marginal probability that x=0. If we want to find the probability that y=0 given that x=0, we compute the fraction of the probabilities in the x=0 column that have the value y=0, which is 4/9 ÷ 6/9 = 4/6. Likewise ...
This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]
In probability theory and statistics, the discrete uniform distribution is a symmetric probability distribution wherein each of some finite whole number n of outcome values are equally likely to be observed. Thus every one of the n outcome values has equal probability 1/n. Intuitively, a discrete uniform distribution is "a known, finite number ...