Search results
Results from the WOW.Com Content Network
Plant embryonic development, also plant embryogenesis, is a process that occurs after the fertilization of an ovule to produce a fully developed plant embryo. This is a pertinent stage in the plant life cycle that is followed by dormancy and germination . [ 1 ]
Somatic embryogenesis is an artificial process in which a plant or embryo is derived from a single somatic cell. [1] Somatic embryos are formed from plant cells that are not normally involved in the development of embryos, i.e. ordinary plant tissue. No endosperm or seed coat is formed around a somatic embryo.
Dicotyledon plantlet Young castor oil plant showing its prominent two embryonic leaves (), which differ from the adult leaves. The dicotyledons, also known as dicots (or, more rarely, dicotyls), [2] are one of the two groups into which all the flowering plants (angiosperms) were formerly divided.
An endosperm is formed after the two sperm nuclei inside a pollen grain reach the interior of a female gametophyte or megagametophyte, also called the embryonic sac.One sperm nucleus fertilizes the egg cell, forming a zygote, while the other sperm nucleus usually fuses with the binucleate central cell, forming a primary endosperm cell (its nucleus is often called the triple fusion nucleus).
Plant hormones (or phytohormones) are signal molecules, produced within plants, that occur in extremely low concentrations. Plant hormones control all aspects of plant growth and development, including embryogenesis, [1] the regulation of organ size, pathogen defense, [2] [3] stress tolerance [4] [5] and reproductive development. [6]
From that point, it begins to divide to form a plant embryo through the process of embryogenesis. As this happens, the resulting cells will organize so that one end becomes the first root while the other end forms the tip of the shoot. In seed plants, the embryo will develop one or more "seed leaves" . By the end of embryogenesis, the young ...
In plant physiology, the epicotyl is the embryonic shoot above the cotyledons. In most plants the epicotyl will eventually develop into the leaves of the plant. In dicots, the hypocotyl is what appears to be the base stem under the spent withered cotyledons, and the shoot just above that is the epicotyl.
In seed plants, the embryo will develop one or more "seed leaves" . By the end of embryogenesis, the young plant will have all the parts necessary to begin its life. Once the embryo germinates from its seed or parent plant, it begins to produce additional organs (leaves, stems, and roots) through the process of organogenesis.