Search results
Results from the WOW.Com Content Network
A complete bipartite graph K m,n has a maximum matching of size min{m,n}. A complete bipartite graph K n,n has a proper n-edge-coloring corresponding to a Latin square. [14] Every complete bipartite graph is a modular graph: every triple of vertices has a median that belongs to shortest paths between each pair of vertices. [15]
The complement graph of a complete graph is an empty graph. If the edges of a complete graph are each given an orientation, the resulting directed graph is called a tournament. K n can be decomposed into n trees T i such that T i has i vertices. [6] Ringel's conjecture asks if the complete graph K 2n+1 can be decomposed into copies of any tree ...
The degree sequence of a bipartite graph is the pair of lists each containing the degrees of the two parts and . For example, the complete bipartite graph K 3,5 has degree sequence (,,), (,,,,). Isomorphic bipartite graphs have the same degree sequence. However, the degree sequence does not, in general, uniquely identify a bipartite graph; in ...
Mathematically, this problem can be formalized as asking for a graph drawing of a complete bipartite graph, whose vertices represent kilns and storage sites, and whose edges represent the tracks from each kiln to each storage site. The graph should be drawn in the plane with each vertex as a point, each edge as a curve connecting its two ...
In graph theory, a star S k is the complete bipartite graph K 1,k : a tree with one internal node and k leaves (but no internal nodes and k + 1 leaves when k ≤ 1). Alternatively, some authors define S k to be the tree of order k with maximum diameter 2; in which case a star of k > 2 has k − 1 leaves. A star with 3 edges is called a claw.
Bipartite graphs may be recognized in polynomial time but, for any k > 2 it is NP-complete, given an uncolored graph, to test whether it is k-partite. [1] However, in some applications of graph theory, a k -partite graph may be given as input to a computation with its coloring already determined; this can happen when the sets of vertices in the ...
The bipartite realization problem is equivalent to the question, if there exists a labeled bipartite subgraph of a complete bipartite graph to a given degree sequence. The hitchcock problem asks for such a subgraph minimizing the sum of the costs on each edge which are given for the complete bipartite graph.
Any regular bipartite graph. [1] Hall's marriage theorem can be used to show that a k-regular bipartite graph contains a perfect matching. One can then remove the perfect matching to obtain a (k − 1)-regular bipartite graph, and apply the same reasoning repeatedly. Any complete graph with an even number of nodes (see below). [2]