Search results
Results from the WOW.Com Content Network
A* (pronounced "A-star") is a graph traversal and pathfinding algorithm that is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. [1] Given a weighted graph, a source node and a goal node, the algorithm finds the shortest path (with respect to the given weights) from source to goal.
The path found by A* on an octile grid vs. the shortest path between the start and goal nodes. Any-angle path planning algorithms are pathfinding algorithms that search for a Euclidean shortest path between two points on a grid map while allowing the turns in the path to have any angle.
A common example of a graph-based pathfinding algorithm is Dijkstra's algorithm. [3] This algorithm begins with a start node and an "open set" of candidate nodes. At each step, the node in the open set with the lowest distance from the start is examined.
In computer science, anytime A* is a family of variants of the A* search algorithm.Like other anytime algorithms, it has a flexible time cost, can return a valid solution to a pathfinding or graph traversal problem even if it is interrupted before it ends, by generating a fast, non-optimal solution before progressively optimizing it.
In computer science, jump point search (JPS) is an optimization to the A* search algorithm for uniform-cost grids. It reduces symmetries in the search procedure by means of graph pruning, [1] eliminating certain nodes in the grid based on assumptions that can be made about the current node's neighbors, as long as certain conditions relating to the grid are satisfied.
In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.
Dijkstra's algorithm is usually the working principle behind link-state routing protocols. OSPF and IS-IS are the most common. Unlike Dijkstra's algorithm, the Bellman–Ford algorithm can be used on graphs with negative edge weights, as long as the graph contains no negative cycle reachable from the source vertex s. The presence of such cycles ...
LPA* maintains two estimates of the start distance g*(n) for each node: . g(n), the previously calculated g-value (start distance) as in A*; rhs(n), a lookahead value based on the g-values of the node's predecessors (the minimum of all g(n' ) + d(n' , n), where n' is a predecessor of n and d(x, y) is the cost of the edge connecting x and y)