enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Asymptotic analysis - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_analysis

    Examples of applications are the following. In applied mathematics, asymptotic analysis is used to build numerical methods to approximate equation solutions. In mathematical statistics and probability theory, asymptotics are used in analysis of long-run or large-sample behaviour of random variables and estimators.

  3. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    The graph of a function with a horizontal (y = 0), vertical (x = 0), and oblique asymptote (purple line, given by y = 2x) A curve intersecting an asymptote infinitely many times In analytic geometry , an asymptote ( / ˈ æ s ɪ m p t oʊ t / ) of a curve is a line such that the distance between the curve and the line approaches zero as one or ...

  4. Asymptotology - Wikipedia

    en.wikipedia.org/wiki/Asymptotology

    In physics and other fields of science, one frequently comes across problems of an asymptotic nature, such as damping, orbiting, stabilization of a perturbed motion, etc. Their solutions lend themselves to asymptotic analysis (perturbation theory), which is widely used in modern applied mathematics, mechanics and physics. But asymptotic methods ...

  5. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    The vertical and horizontal lines are asymptotes. In the same way, it can be shown that the reciprocal of a continuous function r = 1 / f {\displaystyle r=1/f} (defined by r ( x ) = 1 / f ( x ) {\displaystyle r(x)=1/f(x)} for all x ∈ D {\displaystyle x\in D} such that f ( x ) ≠ 0 {\displaystyle f(x)\neq 0} ) is continuous in D ∖ { x : f ...

  6. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    A sigmoid function is constrained by a pair of horizontal asymptotes as . A sigmoid function is convex for values less than a particular point, and it is concave for values greater than that point: in many of the examples here, that point is 0.

  7. Improper integral - Wikipedia

    en.wikipedia.org/wiki/Improper_integral

    but cannot otherwise be conveniently computed. This often happens when the function f being integrated from a to c has a vertical asymptote at c, or if c = ∞ (see Figures 1 and 2). In such cases, the improper Riemann integral allows one to calculate the Lebesgue integral of the function.

  8. Curve sketching - Wikipedia

    en.wikipedia.org/wiki/Curve_sketching

    Graph of the function 3x 3-5x 2 +8 (black) and its first (9x 2-10x, red) and second (18x-10, blue) derivatives.An x value where the y value of the red, or the blue, curve vanishes (becomes 0) gives rise to a local extremum (marked "HP", "TP"), or an inflection point ("WP"), of the black curve, respectively.

  9. Generalised logistic function - Wikipedia

    en.wikipedia.org/wiki/Generalised_logistic_function

    Richards's curve has the following form: = + (+) /where = weight, height, size etc., and = time. It has six parameters: : the left horizontal asymptote;: the right horizontal asymptote when =.