Search results
Results from the WOW.Com Content Network
The corners of a sheet of paper are folded up to meet the opposite sides and (if the paper is not already square) the top is cut off, making a square sheet with diagonal creases. [ 1 ] The four corners of the square are folded into the center, forming a shape known in origami terminology as a blintz base or cushion fold. [ 2 ]
There are two traditional methods for making polyhedra out of paper: polyhedral nets and modular origami.In the net method, the faces of the polyhedron are placed to form an irregular shape on a flat sheet of paper, with some of these faces connected to each other within this shape; it is cut out and folded into the shape of the polyhedron, and the remaining pairs of faces are attached together.
A pinwheel fold. Valley-fold a square into thirds between both pairs of edges, creating nine sub-squares. Cut a diagonal X across the entire center square, pinwheel-fold the outer edges, and fold the protruding pinwheel flaps inward, interleaving them to produce a multilayered square with the top woven together. Fold outward the triangular ...
Unfold these two radial folds. Make another fold across the top connecting the ends of the creases to create a triangle of creases. Unfold this fold as well. Fold one layer of the open point upward and flatten it using the existing creases. A petal fold is equivalent to two side-by-side rabbit ears, which are connected along the reference crease.
Modular origami or unit origami is a multi-stage paper folding technique in which several, or sometimes many, sheets of paper are first folded into individual modules or units and then assembled into an integrated flat shape or three-dimensional structure, usually by inserting flaps into pockets created by the folding process. [3]
To do so, one goes outside the confines of the square area defined by the nine dots themselves. The phrase thinking outside the box, used by management consultants in the 1970s and 1980s, is a restatement of the solution strategy. According to Daniel Kies, the puzzle seems hard because we commonly imagine a boundary around the edge of the dot ...
The fold-and-cut theorem states that any shape with straight sides can be cut from a single (idealized) sheet of paper by folding it flat and making a single straight complete cut. [1] Such shapes include polygons, which may be concave, shapes with holes, and collections of such shapes (i.e. the regions need not be connected ).
The fold-and-cut problem asks what shapes can be obtained by folding a piece of paper flat, and making a single straight complete cut. The solution, known as the fold-and-cut theorem, states that any shape with straight sides can be obtained. A practical problem is how to fold a map so that it may be manipulated with minimal effort or movements.