Search results
Results from the WOW.Com Content Network
The graph of the function f(x) = √x, made up of half a parabola with a vertical directrix. The principal square root function () = (usually just referred to as the "square root function") is a function that maps the set of nonnegative real numbers onto itself.
Notations expressing that f is a functional square root of g are f = g [1/2] and f = g 1/2 [citation needed] [dubious – discuss], or rather f = g 1/2 (see Iterated function#Fractional_iterates_and_flows,_and_negative_iterates), although this leaves the usual ambiguity with taking the function to that power in the multiplicative sense, just as f ² = f ∘ f can be misinterpreted as x ↦ f(x)².
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
The radical symbol refers to the principal value of the square root function called the principal square root, which is the positive one. The two square roots of a negative number are both imaginary numbers , and the square root symbol refers to the principal square root, the one with a positive imaginary part.
The utility function u(c) is defined only up to positive affine transformation – in other words, a constant could be added to the value of u(c) for all c, and/or u(c) could be multiplied by a positive constant factor, without affecting the conclusions. An agent is risk-averse if and only if the utility function is concave.
A square root of a number x is a number r which, when squared, becomes x: =. Every positive real number has two square roots, one positive and one negative. For example, the two square roots of 25 are 5 and −5. The positive square root is also known as the principal square root, and is denoted with a radical sign:
Standard utility functions represent ordinal preferences. The expected utility hypothesis imposes limitations on the utility function and makes utility cardinal (though still not comparable across individuals). Although the expected utility hypothesis is standard in economic modelling, it has been found to be violated in psychological experiments.
For a function to have an inverse, it must be one-to-one.If a function is not one-to-one, it may be possible to define a partial inverse of by restricting the domain. For example, the function = defined on the whole of is not one-to-one since = for any .