Search results
Results from the WOW.Com Content Network
Loads imposed on structures are supported by means of forces transmitted through structural elements. These forces can manifest themselves as tension (axial force), compression (axial force), shear, and bending, or flexure (a bending moment is a force multiplied by a distance, or lever arm, hence producing a turning effect or torque).
Axial loading is defined as applying a force on a structure directly along a given axis of said structure. [1] In the medical field, the term refers to the application of weight or force along the course of the long axis of the body. [2] The application of an axial load on the human spine can result in vertebral compression fractures. [3]
A structural load or structural action is a mechanical load (more generally a force) applied to structural elements. [1] [2] A load causes stress, deformation, displacement or acceleration in a structure. Structural analysis, a discipline in engineering, analyzes the effects of loads on structures and structural elements.
A clear distinction is made between the ultimate state (US) and the ultimate limit state (ULS). The Ultimate State is a physical situation that involves either excessive deformations leading and approaching collapse of the component under consideration or the structure as a whole, as relevant, or deformations exceeding pre-agreed values.
Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.
There are two causes of aerodynamic force: [1]: §4.10 [2] [3]: 29 the normal force due to the pressure on the surface of the body; the shear force due to the viscosity of the gas, also known as skin friction. Pressure acts normal to the surface, and shear force acts parallel to the surface. Both forces act locally.
The sides bulge because the material, although strong enough to not crack or otherwise fail, is not strong enough to support the load without change. As a result, the material is forced out laterally. Internal forces (in this case at right angles to the deformation) resist the applied load.
During axial splitting a crack may release that tensile strain by forming a new surface parallel to the applied load. The material then proceeds to separate in two or more pieces. Hence the axial splitting occurs most often when there is no confining pressure, i.e. a lesser compressive load on axis perpendicular to the main applied load. [6]