Ad
related to: all numbers divisible by 96 and 24 multiplication formulaThis site is a teacher's paradise! - The Bender Bunch
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Educational Songs
Explore catchy, kid-friendly tunes
to get your kids excited to learn.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Lesson Plans
Search results
Results from the WOW.Com Content Network
A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.
The basic rule for divisibility by 4 is that if the number formed by the last two digits in a number is divisible by 4, the original number is divisible by 4; [2] [3] this is because 100 is divisible by 4 and so adding hundreds, thousands, etc. is simply adding another number that is divisible by 4. If any number ends in a two digit number that ...
The fundamental theorem can be derived from Book VII, propositions 30, 31 and 32, and Book IX, proposition 14 of Euclid's Elements.. If two numbers by multiplying one another make some number, and any prime number measure the product, it will also measure one of the original numbers.
A factorial x! is the product of all numbers from 1 to x. The first: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600 (sequence A000142 in the OEIS). 0! = 1 is sometimes included. A k-smooth number (for a natural number k) has its prime factors ≤ k (so it is also j-smooth for any j > k).
If n is a power of an odd prime number the formula for the totient says its totient can be a power of two only if n is a first power and n − 1 is a power of 2. The primes that are one more than a power of 2 are called Fermat primes , and only five are known: 3, 5, 17, 257, and 65537.
However Pomerance showed that the existence of such an integer is highly improbable. Essentially, one can show that if the first k primes p congruent to 1 (mod q) (where q is a prime) are all less than q k+1, then such an integer will be divisible by every prime and thus cannot exist. In any case, proving that Pomerance's counterexample does ...
The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m , for which n / m is again an integer (which is necessarily also a divisor of n ). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21).
If all the prime factors of a number are repeated it is called a powerful number (All perfect powers are powerful numbers). If none of its prime factors are repeated, it is called squarefree. (All prime numbers and 1 are squarefree.) For example, 72 = 2 3 × 3 2, all the prime factors are repeated, so 72 is a powerful number.
Ad
related to: all numbers divisible by 96 and 24 multiplication formulaThis site is a teacher's paradise! - The Bender Bunch