Search results
Results from the WOW.Com Content Network
The relationship between biotic stress and plant yield affects economic decisions as well as practical development. The impact of biotic injury on crop yield impacts population dynamics, plant-stressor coevolution, and ecosystem nutrient cycling. [3] Biotic stress also impacts horticultural plant health and natural habitats ecology. It also has ...
Plants can protect themselves from abiotic stress in many different ways, and most include a physical change in the plant’s morphology. Phenotypic plasticity is a plant’s ability to alter and adapt its morphology in response to the external environments to protect themselves against stress. [ 2 ]
Plant stress research looks at the response of plants to limitations and excesses of the main abiotic factors (light, temperature, water and nutrients), and of other stress factors that are important in particular situations (e.g. pests, pathogens, or pollutants). Plant stress measurement usually focuses on taking measurements from living plants.
Plant hormones are signalling molecules produced within the plant (i.e. they are endogenous). Hormones regulate cellular processes in targeted cells locally and can be moved to other parts of the plant. Examples of plant hormones are auxins, cytokins, gibberellin, ethylene, abscisic acid, salicylic acid and jasmonates.
A plant's first line of defense against abiotic stress is in its roots. If the soil holding the plant is healthy and biologically diverse, the plant will have a higher chance of surviving stressful conditions. [10] The plant responses to stress are dependent on the tissue or organ affected by the stress. [8]
Ecosystem services are ecologically mediated functional processes essential to sustaining healthy human societies. [6] Water provision and filtration, production of biomass in forestry, agriculture, and fisheries, and removal of greenhouse gases such as carbon dioxide (CO 2) from the atmosphere are examples of ecosystem services essential to public health and economic opportunity.
[1] [2] [3] Environmental conditions play a key role in defining the function and geographic distributions of plants. Therefore, when environmental conditions change, this can result in changes to biodiversity. [4] The effects of climate change on plant biodiversity can be predicted by using various models, for example bioclimatic models. [5] [6]
Plant hormones (or phytohormones) are signal molecules, produced within plants, that occur in extremely low concentrations. Plant hormones control all aspects of plant growth and development, including embryogenesis, [1] the regulation of organ size, pathogen defense, [2] [3] stress tolerance [4] [5] and reproductive development. [6]